cover
Contact Name
Agus Harjoko
Contact Email
ijccs.mipa@ugm.ac.id
Phone
+62274 555133
Journal Mail Official
ijccs.mipa@ugm.ac.id
Editorial Address
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN : 19781520     EISSN : 24607258     DOI : https://doi.org/10.22146/ijccs
Indonesian Journal of Computing and Cybernetics Systems (IJCCS), a two times annually provides a forum for the full range of scholarly study . IJCCS focuses on advanced computational intelligence, including the synergetic integration of neural networks, fuzzy logic and eveolutionary computation, so that more intelligent system can be built to industrial applications. The topics include but not limited to : fuzzy logic, neural network, genetic algorithm and evolutionary computation, hybrid systems, adaptation and learning systems, distributed intelligence systems, network systems, human interface, biologically inspired evolutionary system, artificial life and industrial applications. The paper published in this journal implies that the work described has not been, and will not be published elsewhere, except in abstract, as part of a lecture, review or academic thesis.
Articles 10 Documents
Search results for , issue "Vol 14, No 4 (2020): October" : 10 Documents clear
Resource Modification On Multicore Server With Kernel Bypass Dimas Febriyan Priambodo; Ahmad Ashari
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.54170

Abstract

Technology develops very fast marked by many innovations both from hardware and software. Multicore servers with a growing number of cores require efficient software. Kernel and Hardware used to handle various operational needs have some limitations. This limitation is due to the high level of complexity especially in handling as a server such as single socket discriptor, single IRQ and lack of pooling so that it requires some modifications. The Kernel Bypass is one of the methods to overcome the deficiencies of the kernel. Modifications on this server are a combination increase throughput and decrease server latency. Modifications at the driver level with hashing rx signal and multiple receives modification with multiple ip receivers, multiple thread receivers and multiple port listener used to increase throughput. Modifications using pooling principles at either the kernel level or the program level are used to decrease the latency. This combination of modifications makes the server more reliable with an average throughput increase of 250.44% and a decrease in latency 65.83%.
Estimation of Average Car Speed Using the Haar-Like Feature and Correlation Tracker Method Muhammad Dzulfikar Fauzi; Agfianto Eko Putra; Wahyono Wahyono
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.57262

Abstract

The speed of a car traveling on the road can generally be estimated by using a speed gun. Efforts are needed to use CCTV (closed circuit television) as a tool that can be used to estimate the speed of the car so as to ease the burden on the road operator to estimate the speed of the car. This study discusses the estimated average speed of the car with the Haar-like Feature method used to detect the car, then the detection results are tracked using Correlatin Tracker to track the movement of objects that have been detected and calculate the distance of movement from the car, so that the speed of the car detected in video can be estimated. The results of the estimated average speed compared with the results of taking speed with a speed gun so that an error is obtained by MAE testing of 5,55 km / hour and the resulting standard deviation is 4,61 km / hour, thus it can be concluded that the system is made valid and can be used by road organizers to monitor the average speed of a car.
Case-Based Reasoning Using The Nearest Neighbor Method For Detection Of Equipment Damage To PLN Power Plant Riska Amalia Praptiwi; Nur Rokhman; Wahyono Wahyono
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.57434

Abstract

Predictive Maintenance (PdM) at the PLN Power Plant is a periodic monitoring of equipment activities before the equipment is damaged in more severe conditions. According to an expert or PdM owner that maintenance analysis is not appropriate and efficiency has an impact on maintenance costs that are not small. In real conditions, the PdM owner analyzes equipment damage based on previous cases of damage equipment. Then we need a computer-based intelligent system that can help detect damage to equipment.Based on the Literature Review that has been done, Case-Based Reasoning can solve new problems using answers or experiences from old problems such as imitating human abilities. Case-Based Reasoning Process there is the most important step, which is to find the highest similarity value or the level of similarity between new cases and old cases by adapting solutions from old cases that have occurred (Sankar, 2004). In this study the process of similarity or approach using Nearest Neighbor.Testing on the system uses 20 test data and the measurement of system performance uses confusion matrix. Evaluation of testing using confusion matrix can be seen how accurately the system can classify data correctly that is equal to 97.98%. Then the precision value of 95% represents the number of positive categorized data that is correctly divided by the total data classified as positive. Furthermore, the test results of the equipment damage detection test data at the PLN plant with a threshold value of 0.75 using the nearest neighbor, the system has a performance with a 95% sensitivity level.
Dataset Splitting Techniques Comparison For Face Classification on CCTV Images Ade Nurhopipah; Uswatun Hasanah
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.58092

Abstract

The performance of classification models in machine learning algorithms is influenced by many factors, one of which is dataset splitting method. To avoid overfitting, it is important to apply a suitable dataset splitting strategy. This study presents comparison of four dataset splitting techniques, namely Random Sub-sampling Validation (RSV), k-Fold Cross Validation (k-FCV), Bootstrap Validation (BV) and Moralis Lima Martin Validation (MLMV). This comparison is done in face classification on CCTV images using Convolutional Neural Network (CNN) algorithm and Support Vector Machine (SVM) algorithm. This study is also applied in two image datasets. The results of the comparison are reviewed by using model accuracy in training set, validation set and test set, also bias and variance of the model. The experiment shows that k-FCV technique has more stable performance and provide high accuracy on training set as well as good generalizations on validation set and test set. Meanwhile, data splitting using MLMV technique has lower performance than the other three techniques since it yields lower accuracy. This technique also shows higher bias and variance values and it builds overfitting models, especially when it is applied on validation set.
The Strategy of Enhancing Employee Reward Using TOPSIS Method as a Decision Support System Untung Rahardja; Ninda Lutfiani; Sudaryono Sudaryono; Rochmawati Rochmawati
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.58298

Abstract

 Giving rewards for good performance and achievement of tasks needs to be done as a form of recognition and appreciation by the organization/institution to employees, as well as being part of the process of achieving organizational goals. This study aims to develop a Decision Support System that uses the Technique for Order of Preference by Similarity (TOPSIS) method with the PHP programming language to select reward recipients at University. The data used came from 2 groups, namely educational staff (lecturers) and non-educative staff (employees). Determination criteria applied to the educative group are 10 things, namely: tenure, DP3 value, the value on the percentage of work attendance, value on the percentage of teaching attendance, value on lecturer functional position, value on research implementation, the value on implementation of community service, value on the results of the questionnaire by students, the value of employment status, and the value of sanctions. There are 5 determinant criteria used in the non-educative group, namely: tenure, DP3 value, percentage of work attendance, the value of employment status, and value of sanctions. The results of this study are in the form of an information system program as a decision-making tool for the process of selecting reward recipient employees.
Twitter’s User Opinion About Master and Doctoral Degrees: A Model of Sentiment Comparison Victor Wiley; Thomas Lucas
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.58579

Abstract

This paper examines the opinion of student candidate about their plan to study further to master degree (S2) and doctoral degree (S3). There is lack of approach in finding public opinion about the interest of student candidate in continuing study to higher level such as master degree or doctoral degree. Through this paper, the Twitter’s user opinions are extracted using certain data mining technique to find out three sentiment types (negative, neutral, and positive) by taking the most dominant type of emotions (i.e., anger, anticipation, love, fear, joy, sadness, surprise, trust). The dataset is divided into two groups of Twitter’s users. Both datasets represent group A those opinion is about continuing study further to master degree versus group B whose continuing to doctoral degree. The groups are then divided into three types of sentiment statements about master degree versus doctoral degree. The first group is their sentiment about continuing study further to master degree with the result: (a) 109 negative tweets, 1683 neutral tweets and 131 positive tweets. For the second group (e.g., student’s sentiments about continuing to doctoral degree), it has results: (a) 421 negative tweets, 7666 neutral tweets and 1805 positive tweets. The data are tested to give accuracy value of 85%. The result of this sentiment analysis is useful as a reference for universities to understand the development of sentiments (opinion) from Twitter’s users and help the institutions to improve their reputation and quality
Word Analysis of Indonesian Keirsey Temperament Ahmad Fikri Iskandar; Ema Utami; Agung Budi Prasetio
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.58595

Abstract

Personality uniquely relates to our feeling and pattern to the aspect of actions. This behavior will change through the experience, formal education, and the surrounding environment. This works based on the Keirsey Temperament Sorter, a personality questionnaire developed by David Keirsey. This model divides the personality into four categories as Idealists, Rationals, Guardians, and Artisans. This concept is commonly recognized for the interpretation of specialist trends, potentially contributes to the process of recruitment or selection, and potential fields for analysis of social media data. Words selected by using Chi-Square with an error of 5%. Accuracy of the lexicon approach is 34%, while the best machine learning approach is Random Forest algorithm with 69.59%
Face Detection of Thermal Images in Various Standing Body-Pose using Facial Geometry Hurriyatul Fitriyah; Edita Rosana Widasari
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.59672

Abstract

 Automatic face detection in frontal view for thermal images is a primary task in a health system e.g. febrile identification or security system e.g. intruder recognition. In a daily state, the scanned person does not always stay in frontal face view. This paper develops an algorithm to identify a frontal face in various standing body-pose. The algorithm used an image processing method where first it segmented face based on human skin’s temperature. Some exposed non-face body parts could also get included in the segmentation result, hence discriminant features of a face were applied. The shape features were based on the characteristic of a frontal face, which are: (1) Size of a face, (2) facial Golden Ratio, and (3) Shape of a face is oval. The algorithm was tested on various standing body-pose that rotate 360° towards 2 meters and 4 meters camera-to-object distance. The accuracy of the algorithm on face detection in a manageable environment is 95.8%. It detected face whether the person was wearing glasses or not.
Entity Profiling to Identify Actor Involvement in Topics of Social Media Content Puji Winar Cahyo; Muhammad Habibi
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.59869

Abstract

The efficiency of using social media affected modern society's nature and communication; they are more interested in talking through social media than meeting in the real world. The number of talks on social media content depends on the topic being discussed. The more topic interesting will impact the amount of data on social media will be. The data can be analyzed to get the influence of actors (account mentions) on the conversation. The power of an actor can be measured from how often the actor is mentioned in the conversation. This paper aims to conduct entity profiling on social media content to analyze an actor's influence on discussion. Furthermore, using sentiment analysis can determine the sentiment about an actor from a conversation topic. The Latent Dirichlet Allocation (LDA) method is used for analyzes topic modeling, while the Support Vector Machine (SVM) is used for sentiment analysis. This research can show that topics with positive sentiment are more likely to be involved in disaster management accounts, while topics with negative sentiment are more towards involvement in politicians, critics, and online news.
Attention-Based BiLSTM for Negation Handling in Sentimen Analysis Riszki Wijayatun Pratiwi; Yunita Sari; Yohanes Suyanto
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 4 (2020): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.60733

Abstract

Research on sentiment analysis in recent years has increased. However, in sentiment analysis research there are still few ideas about the handling of negation, one of which is in the Indonesian sentence. This results in sentences that contain elements of the word negation have not found the exact polarity.The purpose of this research is to analyze the effect of the negation word in Indonesian. Based on positive, neutral and negative classes, using attention-based Long Short Term Memory and word2vec feature extraction method with continuous bag-of-word (CBOW) architecture. The dataset used is data from Twitter. Model performance is seen in the accuracy value.The use of word2vec with CBOW architecture and the addition of layer attention to the Long Short Term Memory (LSTM) and Bidirectional Long Short Term Memory (BiLSTM) methods obtained an accuracy of 78.16% and for BiLSTM resulted in an accuracy of 79.68%. whereas in the FSW algorithm is 73.50% and FWL 73.79%. It can be concluded that attention based BiLSTM has the highest accuracy, but the addition of layer attention in the Long Short Term Memory method is not too significant for negation handling. because the addition of the attention layer cannot determine the words that you want to pay attention to.

Page 1 of 1 | Total Record : 10