cover
Contact Name
Yusuf Ramadhan Nasution
Contact Email
jirsi.jurnal@gmail.com
Phone
+6285297473212
Journal Mail Official
jirsi.jurnal@gmail.com
Editorial Address
Jl. Kapten M. Jamil Lubis No.45, Bandar Selamat, Kec. Medan Tembung, Kota Medan, Sumatera Utara 20223
Location
Kota medan,
Sumatera utara
INDONESIA
Jurnal Ilmu Komputer dan Sistem Informasi
Published by Unity Academy
ISSN : 28306031     EISSN : 28303954     DOI : -
Core Subject : Science,
Jurnal Ilmu Komputer dan Sistem Informasi (JIRSI) dikelola secara profesional oleh LKP UNITY Academy dalam membantu para akademisi, peneliti dan praktisi untuk menyebarkan hasil penelitiannya dalam panduan Kemendikbud Ristek Dikti. Jurnal Ilmu Komputer dan Sistem Informasi (JIRSI) Adalah sebuah Jurnal blind peer-review yang didedikasikan untuk publikasi hasil karya ilmiah yang berkualitas di bidang Ilmu Komputer dan Teknologi Informasi (bidang rekayasa perangkat lunak, ilmu komputer, sistem informasi, teknologi informasi dan komunikasi, meachine learning, mikrokontroller, artificial intelligence, computer vision, jaringan komputer). Jurnal Ilmu Komputer dan Sistem Informasi (JIRSI) Terbit 3 kali setahun (Januari, Mei, September).
Articles 11 Documents
Search results for , issue "Vol. 4 No. 1 (2025): Januari 2025" : 11 Documents clear
Evaluasi Model Machine Learning untuk Prediksi Harga Mobil dengan Perbandingan Ensemble dan Regresi Linear Idris, Nur Oktavin; Pontoiyo, Fuad
Jurnal Ilmu Komputer dan Sistem Informasi Vol. 4 No. 1 (2025): Januari 2025
Publisher : LKP Unity Academy

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70340/jirsi.v4i1.181

Abstract

Car price prediction is a major challenge in the automotive industry because it is influenced by various factors, such as technical specifications, fuel type, and transmission system. This research aims to evaluate and compare the performance of linear regression models and ensemble learning methods, namely Random Forest and Gradient Boosting, in predicting car prices. The dataset used comes from Kaggle, with 11,914 rows of data and 16 features. The research process includes the stages of data understanding, data preparation, modeling, and evaluation using the Mean Squared Error (MSE) and R-squared (R²) metrics. The research results show that the Gradient Boosting model has the best performance, with an R² value of 0.963868 and the lowest MSE compared to other models, followed by Random Forest with an R² of 0.899657. In contrast, linear regression showed lower performance, with an R² of 0.417905, indicating its limitations in handling non-linear relationships in the data. The prediction results from the best model show price estimates that are quite close to actual prices, although some improvements still need to be made through hyperparameter optimization. This research confirms that ensemble learning methods, especially Gradient Boosting, provide a more effective approach to predicting car prices than linear regression. This model has the potential to be applied in the automotive industry to improve the accuracy of vehicle price estimates for manufacturers, dealers, and consumers.

Page 2 of 2 | Total Record : 11