cover
Contact Name
Mustakim
Contact Email
officialpredatecs.irpi@gmail.com
Phone
+6285275359942
Journal Mail Official
officialpredatecs.irpi@gmail.com
Editorial Address
INSTITUT RISET DAN PUBLIKASI INDONESIA Jl. Tuah Karya Ujung C7. Kel. Tuah Madani Kec. Tuah Madani, Kota Pekanbaru - Riau
Location
Kota pekanbaru,
Riau
INDONESIA
PREDATECS: Public Research Journal of Engineering, Data Technology and Computer Science
ISSN : 3024921X     EISSN : 30248043     DOI : https://doi.org/10.57152/predatecs
PREDATECS: Public Research Journal of Engineering, Data Technology and Computer Science is a scientific journal published by the Institute of Research and Publication Indonesian (IRPI) or Institut Riset dan Publikasi Indonesia (IRPI). The main focus of PREDATECS Journal is Engineering, Data Technology and Computer Science. PREDATECS Journal is written in English consisting of 8 to 12 A4 pages, using Mendeley reference management and similarity/ plagiarism below 20%. Manuscript submission in PREDATECS Journal uses the Open Journal System (OJS) system using Microsoft Word format (.doc or .docx). The PREDATECS Journal review process applies a Closed System (Double Blind Reviews) with 2 reviewers for 1 article. Articles are published in open access and open to the public.
Articles 7 Documents
Search results for , issue "Vol. 1 No. 2: PREDATECS January 2024" : 7 Documents clear
Implementation of Association Rules Algorithm to Identify Popular Topping Combinations in Orders Putra, Rizki Aulia; Putri, Margareta Amalia Miranti; Sinaga, Sri Maharani; Octavia, Sania Fitri; Rachman, Raihan Catur
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.863

Abstract

Association rule is a data mining technique to find associative rules between a combination of items. This research aims to apply association rules algorithm in identifying popular topping combinations in food orders. This application aims to help restaurant owners or food businesses understand their customers' preferences and optimize their menu offerings. Data obtained from kaggle, the association rules algorithm is applied to this dataset to identify patterns or combinations of toppings that often appear together in orders. The results of this study show toppings with chocolate as a popular item in orders. These findings can provide valuable insights for food business owners in structuring their menus and determining attractive offers for customers. This study also applied a comparison between the apriori, fp- growth and eclat algorithms, with the result that the best item transaction rule was found: a combination of dill & unicorn toppings with chocolate with 60% confidence. Overall, the application of eclat algorithm in this study provides the best performance with higher execution speed, thus providing insight into customer preferences regarding topping combinations in food orders. Despite the shortcomings of the data form from this study, it is expected to help business owners in optimizing their offerings, increasing customer satisfaction, and improving their business performance.
Performance Comparison Between Artificial Neural Network, Recurrent Neural Network and Long Short-Term Memory for Prediction of Extreme Climate Change Luchia, Nanda Try; Tasia, Ena; Ramadhani, Indah; Rahmadeyan, Akhas; Zahra, Raudiatul
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.864

Abstract

Extreme climate change is the most common problem in Indonesia. Extreme climate change for months can cause various natural disasters. Therefore, it is necessary to make predictions about climate change that will occur in order to avoid the risk of future conflicts. This study uses the Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) algorithms by comparing the performance of the three using Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) evaluations. The results of this study indicate that RNN is better at predicting temperature in Indonesia compared to ANN and LSTM. This is evidenced by the MAPE value generated by the RNN which is smaller than the ANN and LSTM, which is 1.852 %, the RMSE value is 1,870, and the MSE value is 3,497.
Application of Convolutional Neural Network ResNet-50 V2 on Image Classification of Rice Plant Disease Hastari, Delvi; Winanda, Salsa; Pratama, Aditya Rezky; Nurhaliza, Nana; Ginting, Ella Silvana
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.865

Abstract

Rice is the most important crop in global food security and socioeconomic stability. A part of the world's population makes rice a food requirement but the problem is found that all rice varieties suffer from several diseases and pests. Therefore, it is necessary to ensure the quality of healthy and proper rice growth by detecting diseases present in rice plants and treatment of affected plants. In this study, the Convolutional Neural Network (CNN) algorithm was applied in classifying diseases on the leaves of rice plants by experimenting with several parameters and architecture to get the best accuracy. This study was conducted image classification of rice plant disease using CNN architecture ResNet-50V2 with data using preprocessing Augmentation. The test was conducted with three optimizers such as SGD, Adam, and RMSprop by combining various parameters, namely epoch, batch size, learning rate, and SGD and RMSprop optimizers. Division of image data with 70:30 ratio of training data and test data; 80:20; 90:10. From these results, it was found that Adam was the best optimizer in the 80:20 data division in this study with an accuracy level of 0.9992, followed by the SGD optimizer with an accuracy level of 0.9983, while the RMSProp optimizer was ranked third with an accuracy level of 0.9978.
Performance Comparison of ARIMA, LSTM and SVM Models for Electric Energy Consumption Analysis Azani, Nilam Wahdiaz; Trisya, Cintia Putri; Sari, Laras Mayangda; Handayani, Hani; Alhamid, Muhammad Rizki Miftha
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.869

Abstract

The changing needs of electrical energy result in the electrical power needed for everyday life being unstable, so planning and predicting how much electrical load is needed so that the electricity generated is always of good quality. So it is necessary to predict the consumption of electrical energy by using forecasting on the machine learning method. Support Vector Machine (SVM), Autoregressive Integrated Motion Average (ARIMA), and Long Short-Term Memory (LSTM) are models that are often used to overcome patterns in predictions. To find out the best models how to predict electricity consumption in the future and how the SVM, LSTM, and ARIMA algorithms perform in predicting electricity consumption. This research will look for the RMSE value and prediction time, then compare it with the best average value. The results of the study show that the ARIMA model is able to predict electricity usage for the next 1 year period, in the evaluation using the RMSE metric, where SVM shows a much lower value than ARIMA and LSTM. In this case, SVM achieved RMSE of 0.020, while ARIMA and LSTM achieved RMSE of 7.659 and 11.4183, respectively. Even though SVM has a lower RMSE, it is still unable to predict electricity usage for the next 1 year with sufficient accuracy.
Text Classification of Translated Qur'anic Verses Using Supervised Learning Algorithm Ananda, Dhea; Nurhidayarnis, Syahida; Afifah, Tiara Afrah; Ramadhan, Muhammad Anang; Mahendra, Ilvan
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.870

Abstract

The Quran, comprising Allah's absolute divine messages, serves as guidance. Although reading the Quran with tafsir proves beneficial, it may not offer a comprehensive understanding of the entire message conveyed by the Al-Quran. This is due to the Quran addressing diverse topics within each surah, necessitating readers to reference interconnected verses throughout the entire chapter for a holistic interpretation. However, given the extensive and varied verses, obtaining accurate translations for each verse can be a complex and time-consuming endeavor. Therefore, it becomes imperative to categorize the translated text of Quranic verses into distinct classes based on their primary content, utilizing Fuzzy C-Means, Random Forest, and Support Vector Machine. The analysis, considering the obtained Davies-Bouldin Index (DBI) value, reveals that cluster 9 emerges as the optimal cluster for classifying QS An-Nisa data, exhibiting the lowest DBI value of 4.30. Notably, the Random Forest algorithm demonstrates higher accuracy compared to the SVM algorithm, achieving an accuracy rate of 66.37%, while the SVM algorithm attains an accuracy of 50.56%.
Implementation of Convolutional Neural Network (CNN) for Image Classification of Leaf Disease In Mango Plants Using Deep Learning Approach Rinanda, Puji Dwi; Aini, Delvi Nur; Pertiwi, Tata Ayunita; Suryani, Suryani; Prakash, Allam Jaya
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.872

Abstract

Plant diseases pose a serious threat to a country's economy and food security. One way to identify diseases in plants is through the visible features on their leaves. Farmers need to conduct an active examination of the condition of the leaves of plants to eradicate this disease. In this case, automatic recognition and classification of diseases of leaf crops is required in order to obtain an accurate identification. Digital image processing technology can be used to solve this problem. One effective approach is the Convolutional Neural Network (CNN). The trial image used a dataset consisting of 4000 images of mango leaf disease, namely Anthracnose, Bacterial Canker, Cutting Weevil, Die Back, Gall Midge, Powdery Mildew, and Sooty Mould. This study aims to compare the accuracy of CNN, VGG16 and InceptionV3.  Architectural modeling uses these drawings to train and test models in recognizing and classifying mango leaf diseases. The results of modeling trials in the three scenarios were most optimally obtained by VGG16 with an accuracy of 96.87%, then InceptionV3 with an acquisition of 96.50% and CNN by 81%.
Comparison of K-Means, BIRCH and Hierarchical Clustering Algorithms in Clustering OCD Symptom Data Rizalde, Alika Rahmarsyarah; Mubarak, Haykal Alya; Ramadhan, Gilang; Fatan, Mohd. Adzka
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.1106

Abstract

The hallmarks of Obsessive-Compulsive Disorder (OCD) are intrusive, anxiety-inducing thoughts (called obsessions) and associated repeated activities (called compulsions). To understand the patterns and relationships between OCD data that have been obtained, data will be grouped (clustering). In clustering using several clustering algorithms, namely K-Means, BIRCH, In this work, hierarchical clustering was used to identify the optimal cluster value comparison, and the Davies Bouldin Index (DBI) was used to confirm the results. Then the results of the best cluster value in processing OCD data are using the BIRCH algorithm in the K10 experiment which gets a value of 1.3. While the K-Means algorithm obtained the best cluster at K10 with a value obtained of 1.36 and the Hierarchical clustering algorithm also at the K10 value of 2.03. Thus in this study, the comparison results of the application of 3 clustering algorithms obtained results, namely the BIRCH algorithm shows the value of the resulting cluster is the best in clustering OCD data. This means that the BIRCH algorithm can be used to cluster OCD data more accurately and efficiently.

Page 1 of 1 | Total Record : 7