cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 11 Documents
Search results for , issue "2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)" : 11 Documents clear
Characterization and Application of Aluminum Dross as Catalyst in Pyrolysis of Waste Cooking Oil Faten Hameed Kamil; Ali Salmiaton; Raja Mohamad Hafriz Raja Shahruzzaman; R. Omar; Abdulkareem Ghassan Alsultsan
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.557.81-88

Abstract

Aluminium dross, a waste material produced by dissolution of aluminum scrap, was characterized physically and chemically by various analysis techniques for a potential to be used as catalyst. Using catalyst from waste materials reduced the cost for synthesizing of new catalyst. An efficient catalyst derived from industrial solid waste was modified by acid washing for using in a pyrolysis of waste cooking oil. The modification of aluminum dross resulted in increased surface area (from 0.96 to 68.24 m2/g), acidity (from 315 to 748 µmol/g) and thermal stability. Pyrolysis waste cooking oil was used to test the performance of aluminum dross as catalyst before and after modification. The product analysis showed a better result than the unmodified material based on increased yield of bio-oil and improved selectivity. 
Synthesis and Characterization of Pure and Nano-Ag Impregnated Chitosan Beads and Determination of Catalytic Activities of Nano-Ag Zahoor Ahmad; Maryam Maqsood; Mazher Mehmood; Mirza Jameel Ahmad; Muhammad Aziz Choudhary
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.860.127-135

Abstract

The synthesis of nano-Ag impregnated porous Chitosan beads, in crosslinked and uncrosslinked forms, was aimed to investigate their catalytic potential in reducing nitro group into amino by NaBH4. The material was found unique concerning the synthesis of well-defined Ag NPs and subsequently adsorbing them on its surface. The crosslinked and uncrosslinked chitosan beads were separately analyzed for the loading of Ag and its effect over the microstructures of the substrate. BET was used to explore the porous nature and pore size distributions of beads. At each stage, SEM coupled with EDX, FT-IR, and inductively coupled plasma (ICP) were employed to characterize the material. The catalytic activities of nano-Ag in crosslinked and uncrosslinked beads were determined by the reduction of 4-Nitrophenol (4-NP) into 4-aminophenol (4-AP) by NaBH4; which is least effective for such reduction. The catalytic activities were monitored by UV-Vis spectrophotometer. The results demonstrated the nano-Ag as a reliable and active catalyst which made NaBH4 quite capable for the nitro reduction. Moreover, the catalytic activities of crosslinked chitosan substrate were found more reproducible as compared to the uncrosslinked substrate. 
Preparation of Biofuel from Palm Oil Catalyzed by Ammonium Molybdate in Homogeneous Phase Sepehr Sadighi; Seyed Kamal Masoudian Targhi
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.486.49-54

Abstract

Producing transportation fuels from bio sources was of prime importance due to the strict environmental legislations for producing clean fuels from conventional oil resources. However, the economical impacts of the biofuel production should be considered. In this study, the production of bio-naphtha and biodiesel from palm oil using homogeneous catalyst, i.e. an aqueous phase of ammonium molybdate, was studied. This catalyst was prepared by dissolving sodium molybdate in de-ionized water with hydrochloric acid, and then neutralizing the mixture with ammonium hydroxide. The solution was dried at 90 °C for 24 h to obtain ammonium molybdate. Then, characterization of the catalyst was done by informative techniques, such as XRD and FT-IR. The results showed that the main phase of the synthesized catalyst was molybdate ammonium hydrates (4MoO3.2NH3.H2O), and also bands of Mo–O, Mo–O–Mo, N–H and surface hydroxyl groups were observed in the sample. Moreover, activity test confirms that the bio-naphtha produced from the proposed method has a few aromatic components, and its sulfur content was negligible. Moreover, ash, nitrogen, sulfur and carbon residue were not detected in the produced biodiesel, and its Cetane index was 66.3. Therefore, it was a suitable fuel for diesel engines vehicles. 
Variability of Data in High Throughput Experimentation for Catalyst Studies in Fuel Processing Niels T.J. Luchters; J. V. Fletcher; S. J. Roberts; J. C. Q. Fletcher
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.708.106-112

Abstract

The use of high throughout and combinatorial experimentation is becoming commonplace in catalytic research. The benefits of parallel experiments are not only limited to reducing the time-to-market, but also give an opportunity to study processes in more depth, by generating more data. To investigate the complete parameter space, multiple experiments must be performed and the variability between these experiments must be quantifiable. In this project, the reproducibility and variance in high throughput catalyst preparation and parallel testing were determined. High-performance equipment was used in a catalyst development program for fuel processing, the production of fuel cell-grade hydrogen from hydrocarbon fuels. Four studies, involving water-gas shift conversion and high-temperature steam methane reforming, were performed to determine the reproducibility of the workflow from automated catalyst preparation to parallel activity testing. Statistical analyses showed the standard deviation in catalytic activities as determined by conversion, to be less than 6% of the average value.  
Evaluation of Novel Integrated Dielectric Barrier Discharge Plasma as Ozone Generator Muhammad Nur; Ade Ika Susan; Zaenul Muhlisin; Fajar Arianto; Andi Wibowo Kinandana; Iis Nurhasanah; Sumariyah Sumariyah; Pratama Jujur Wibawa; Gunawan Gunawan; Anwar Usman
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.605.24-31

Abstract

This paper presents a characterization of an integrated ozone generator constructed by seven of reactors of Dielectric Barrier Discharge Plasma (DBDP). DBDP a has spiral-cylindrical configuration. Silence plasma produced ozone inside the DBDP reactor was generated by AC-HV with voltage up to 25 kV and maximum frequency of 23 kHz. As a source of ozone, dry air was pumped into the generator and controlled by valves system and a flowmeter. We found ozone concentration increased with the applied voltage, but in contrary, the concentration decreased with the flow rate of dry air. It was also found that a maximum concentration was 20 mg/L and ozone capacity of 48 g/h with an input power of 1.4 kW. Moreover, in this generator, IP efficiency of 8.13 g/kWh was obtained at input power 0.45 kW and air flow rate of 9 L/min. Therefore, be the higher ozone capacity can be produced with higher input power; however, it provided lower IP efficiency. The effect of dry air flow rate and applied voltage on ozone concentrations have been studied. At last, spiral wire copper was very corrosive done to the interaction with ozone, and it is necessary to do a research for finding the best metals as an active electrode inside of the quartz dielectric. 
Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst Dhaifallah Aldhayan; Ahmed Aouissi
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.758.119-126

Abstract

Natural Kaolin Clay was calcined and treated by sulfuric acid. The resulting solid acid catalyst was characterized by FTIR, TGA, and X-ray powder diffraction (XRD) and tested for isobutene oligomerization in a gas phase. The characterization results showed that the acid treated clay underwent chemical and structural transformations. After acid treatment, the Si/Al ratio was increased, and the crystalline raw clay became amorphous. The effects of various parameters such as reaction temperature, reaction time and contact time on isobutene oligomerization were investigated. Catalytic tests showed that isobutene oligomerization led to dimers and trimers as major products. Tetramers were obtained as by- products. At relatively high reaction temperatures and long contact times, the conversion was enhanced while the selectivity of dimers was decreased in favor of higher oligomers. 
Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant Mukhamad Nurhadi
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.501.55-61

Abstract

The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV) isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS). The catalysts were characterized by X-ray diffraction (XRD), IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0). High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0) were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. 
Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media Biuck Habibi; Serveh Ghaderi
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.460.1-13

Abstract

In this study, Ni-Al layered double hydroxide (LDH)-Pt nanoparticles (PtNPs) as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE) by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. 
Author Guidelines (2017)
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.941.App.1-App.6

Abstract

Author Guidelines (2017) 
Synthesis, Structural Characterization and Catalytic Activity of A Cu(II) Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine Wang Li-Hua; Liang Lei; Wang Xin
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.735.113-118

Abstract

In order to study the catalytic activity of Cu(II) coordination polymer material, a novel 1D chained Cu(II) coordination polymer material, [CuL(bipy)(H2O)5]n (A1) (H2L = 1,4-phenylenediacetic acid, bipy = 2,2’-bipyridine), has been prepared by the reaction of 1,4-phenylenediacetic acid, 2,2’-bipyridine, Cu(CH3COO)2·H2O and NaOH. The composition of A1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction. The results of characterization show that each Cu(II) atom adopts six-coordination and forms a distorted octahedral configuration. The catalytic activity and reusability of A1 catalyst for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene have been investigated. And the results show that the Cu(II) complex catalyst has good catalytic activity with a maximum yield of 54.3% and stability. 

Page 1 of 2 | Total Record : 11


Filter by Year

2017 2017


Filter By Issues
All Issue 2026: BCREC Volume 21 Issue 1 Year 2026 (April 2026) (Issue in Progress) 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025) 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025) 2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025) 2025: BCREC Volume 20 Issue 1 Year 2025 (April 2025) 2025: Just Accepted Manuscript and Article In Press 2025 2024: BCREC Volume 19 Issue 4 Year 2024 (December 2024) 2024: BCREC Volume 19 Issue 3 Year 2024 (October 2024) 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024) 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue