cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 803 Documents
Catalytic Activities of Fe3+- and Zn2+-Natural Zeolite on the Direct Cyclisation-Acetylation of (R)-(+)-Citronellal Edy Cahyono; M. Muchalal; Triyono Triyono; Harno Dwi Pranowo
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.2.5936.128-135

Abstract

Characterisation and catalytic ativities investigation of modified natural zeolite on cyclisation acetylation reaction of (R)-(+)-citronellal was performed. The experimental work involved isolation of (R)-(+)-citronellal from Java Citronella oil (Cymbopogon winterianus) by vacuum fractional distillation, determination of its enantiomer, preparation and characterisation of different catalysts i.e. H-natural zeolite (H-Za), Fe3+-natural zeolite (Fe3+-Za), and Zn2+-natural zeolite (Zn2+-Za), followed by examination of catalytic activity and selectivity. Isolated citronellal contained 88.21% ee of (R)-(+)-citronellal. The main products of cyclisation-acetylation of (R)-(+)-citronellal was IPA (isopulegyl acetate) and NIPA (neo-isopulegyl acetate). Although the highest yield of IPA and NIPA was obtained by Fe3+-Za catalyst (78.69%) at 80oC and 120 min, the stereoselectivity of Fe3+-Za slightly lower than that of Zn2+-Za. Structure elucidation of citronellal and products was carried out by means of GC and GC-MS. Lewis acidity plays the role of acetyl ionic formation from acetic anhydride. The Activity and stereoselectivity of catalysts depended on Lewis acidity and cation distribution on the catalyst surface. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Synthesis, Structure, and Catalytic Activity of A New Mn(II) Complex with 1,4-Phenylenediacetic Acid and 1,10-Phenanthroline Li Hua Wang; Peng Fei Li
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.1.975.1-6

Abstract

A new Mn(II) complex material has been synthesized by one-pot reaction of Mn(CH3COO)2·4H2O, 1,4-phenylenediacetic (H2L), 1,10-phenanthroline (phen), and NaOH in water/ethanol (v:v = 1:1) solution. The structure of Mn(II) complex was determined by elemental analysis, FTIR, and X-ray single-crystal diffraction analysis. The results reveal that Mn(II) complex was constructed by a monodentate 1,4-phenylenediacetate ligand, two phen ligands, a coordinated water molecule, 0.5 uncoordinated 1,4-phenylenediacetate ligand and six uncoordinated water molecules. The complex molecules form 1D chain structure by the π-π interaction of phen molecules. The catalytic activity of Mn(II) complex for coupling of benzaldehyde, phenylacetylene and piperidine in 1,4-dioxane has also been  investigated  and the maximum yield of propargylamine is up to 72.2 % after 12 h at 120 oC. 
Optimization of Oxidative Desulfurization Reaction with Fe2O3 Catalyst Supported on Graphene Using Box-Behnken Experimental Method Hameed Hussein Alwan; Ammar Ali Ali; Hasan F. Makki
Bulletin of Chemical Reaction Engineering & Catalysis 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.15.1.6670.175-185

Abstract

In this study, the catalyst activity of Fe2O3 supported on Graphene for Iraqi gas oil oxidation desulfurization (ODS) by hydrogen peroxide (H2O2) was investigated. The prepared catalyst was synthesized by wet impregnation for ferric nitrate as a Fe2O3 precursor while Graphene represented as catalyst support. The synthesized catalyst was characterized by XRD, FTIR, and EDS analysis. The experiments were designed according to three-level for three variables by Box-Behnken experimental design; Stirring time, catalyst dosage and temperature while the sulfur removal efficiency acts as experiment response. Catalyst activity was studied by ODS reaction for Iraqi gas oil (sulfur content 9400 ppm) at temperature range (40-60 ºC), stirring time (160-240 minutes) and catalyst dosage (0.5-2.5 g), the results show maximum sulfur removal efficiency 90% at stirring time, catalyst dosage and temperature 240 min, 1.5 g, and 60 ºC, respectively. ANOVA analysis shows the important effect of each independent variable on sulfur removal efficiency (response) as following influential order; stirring time, reaction temperature and catalyst dosage. Kinetics calculation showed that the ODS reaction obeys pseudo first-order reaction with reaction rate constant equal 1.0837, 1.5893, and 2.5053 at temperature 40, 50, and 60 ºC, respectively, while activation energy equal 36.26 kJ/mol. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion Istadi Istadi; N. A. S. Amin
Bulletin of Chemical Reaction Engineering & Catalysis 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.2.2-3.8.37-44

Abstract

A catalytic - DBD plasma reactor was designed and developed for co-generation of synthesis gas and C2+ hydrocarbons from methane. A hybrid Artificial Neural Network - Genetic Algorithm (ANN-GA) was developed to model, simulate and optimize the reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of catalytic DBD plasma reactor was explored. The Pareto optimal solutions and corresponding optimal operating parameters ranges based on multi-objectives can be suggested for catalytic DBD plasma reactor owing to two cases, i.e. simultaneous maximization of CH4 conversion and C2+ selectivity, and H2 selectivity and H2/CO ratio. It can be concluded that the hybrid catalytic DBD plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and showed better than the conventional fixed bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity for CO2 OCM process. © 2007 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Backmatter (Publication Ethics, Copyright Transfer Agreement for Publishing Form)
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.11805.App.1-App.5

Abstract

High Acidity and Low Carbon-Coke Formation Affinity of Co-Ni/ZSM-5 Catalyst for Renewable Liquid Fuels Production through Simultaneous Cracking-Deoxygenation of Palm Oil Istadi Istadi; Teguh Riyanto; Didi Dwi Anggoro; Cokorda Satrya Pramana; Amalia Rizqi Ramadhani
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17974

Abstract

This study investigates the effect of chemically doped Co and Ni metals on ZSM-5 catalyst with respect to the catalysts’ characteristics and performance for palm oil cracking. Some characterization methods have been conducted to identify the physicochemical properties of the synthesized catalysts, including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), N2-physisorption, NH3- and CO2-probed Temperature Programmed Desorption (NH3-TPD and CO2-TPD) methods. The deposited carbon-coke on the spent catalysts is analysed using simultaneous thermal gravimetric – differential scanning calorimetry (TG-DTG-DSC) analysis. The performance of catalysts was evaluated on palm oil cracking process in a continuous fixed-bed catalytic reactor at 450 °C. To determine the liquid product composition functional group and components, we used Attenuated Total Reflectance Fourier-transform Infrared Spectroscopy (ATR-FTIR) and batch distillation methods, respectively. We found that the Co metal chemically-doped on Ni/SM-5 catalyst, resulting the increase in the catalysts acidity and the decrease in catalysts basicity. The conversion of palm oil increases as the increase of the ratio of catalysts’ acidity to basicity. The highest triglyceride conversion (76.5%) was obtained on the 3Co-Ni/ZSM-5 with the yield of gasoline, kerosene, and diesel of 2.61%, 4.38%, and 61.75%, respectively. It was also found that the chemically doping Co metal on Ni/ZSM-5 catalyst decreased carbon-coke formation due to the low catalysts’ basicity. Overall, it is proven that the combination of Co and Ni, which chemically doped, on ZSM-5 catalyst has a good activity in palm oil conversion with low carbon-coke formation affinity and high acidity of catalyst.
A Preliminary Study: Esterification of Free Fatty Acids (FFA) in Artificially Modified Feedstock Using Ionic Liquids as Catalysts Nurul Asmawati Roslan; Mohammad Haniff Che Hasnan; Norhayati Abdullah; Syamsul Bahari Abdullah; Sumaiya Zainal Abidin
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.11.2.549.182-190

Abstract

The exploration of non-edible oils as a feedstock has been positively affect the economic viability of biodiesel production.  Due to the high level of free fatty acid (FFA) in non-edible oils, esterification is needed to remove the acidity to the minimum level before base-catalyzed transesterification.  In this study, 1-hexyl-3-methylimidazolium hydrogen sulphate (HMIMHSO4) was self-synthesized and compared with the commercialized ionic liquid, 1-butyl-3-methylimidazolium hydrogen sulphate (BMIMHSO4). HMIMHSO4 and BMIMHSO4 were characterized by 1H NMR prior to use in the esterification reaction. The reaction was carried out in a batch reactor and variables such as types of alcohol, oil: alcohol molar ratio, temperature and types of stirring were investigated. The highest conversion for each catalyst was achieved using ethanol as a solvent at the condition of 343 K reaction temperature, 12:1 alcohol to oil ratio in 8 h reaction time. BMIMHSO4 showed higher conversion (98%) as compared to HMIMHSO4 with only 82% conversion. Clearly, BMIMHSO4 shows considerable potential to reduce the FFA in the feedstock as it is exhibit excellent catalytic activity due to lower alkyl chain of BMIMHSO4 compared to HMIMHSO4. 
A Green Synthesis of Polylimonene Using Maghnite-H+, an Exchanged Montmorillonite Clay, as Eco-Catalyst Hodhaifa Derdar; Mohammed Belbachir; Amine Harrane
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.1.2692.69-78

Abstract

A new green polymerization technique to synthesis polylimonene (PLM) is carried out in this work. This technique consists of using Maghnite-H+ as eco-catalyst to replace Friedel-Crafts catalysts which are toxics. Maghnite-H+ is a montmorillonite silicate sheet clay which is prepared through a simple exchange process. Polymerization experiments are performed in bulk and in solution using CH2Cl2 as solvent. Effect of reaction time, temperature and amount of catalyst is studied, in order to find the optimal reaction conditions. The polymerization in solution leads to the best yield (48.5%) at -5°C for a reaction time of 6 h but the bulk polymerization, that is performed at 25°C, remains preferred even if the yield is lower (40.3%) in order to respect the principles of a green chemistry which recommend syntheses under mild conditions, without solvents and at room temperature. The structure of the obtained polymer (PLM) is confirmed by FT-IR and Nuclear Magnetic Resonance of proton (1H-NMR). The glass transition temperature (Tg) of the polylimonene is defined using Differential Scanning Calorimetry (DSC) and is between 113°C and 116°C. The molecular weight of the obtained polymer is determined by Gel Permeation Chromatography (GPC) analysis and is about 1360 g/mol. Copyright © 2019 BCREC Group. All rights reserved 
Short Review: Mitigation of Current Environmental Concerns from Methanol Synthesis Andrew Young; Donny Lesmana; Der-Jong Dai; Ho-Shing Wu
Bulletin of Chemical Reaction Engineering & Catalysis 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.8.1.4055.1-13

Abstract

Methanol has become a widely used and globally distributed product. Methanol is very important due to the current depletion of fossil fuels. Industrially, methanol produced from the catalytic reaction of synthetic gas composed of hydrogen, carbon monoxide, and carbon dioxide. Methanol production has brought great attention due to carbon dioxide as the main source of greenhouse gas emissions. Combined of reducing CO2 emissions and supplying an alternative fuel source has created the idea of a carbon neutral cycle called “the methanol economy”. The best catalyst for the methanol economy would show a high CO2 conversion and high selectivity for methanol production. This paper investigates research focused on catalyst development for efficient methanol synthesis from hydrogenation of carbon dioxide through added various supports and additives such as silica, zirconium, and palladium. Catalysts that displayed the highest activity included a zirconia and silicon-titanium oxide promoted Cu/Zn/Al2O3 catalyst. Alternative method of catalyst preparation, include the oxalate-gel, solid-state reaction, co-precipitation and combustion method also investigated.  © 2013 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Feasibility of Macroporous CeO2 Photocatalysts for Removal of Lead Ions from Water Takuya Nozaki; Ryo Shoji; Yasukazu Kobayashi; Kazunori Sato
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1020.256-261

Abstract

Removal of lead ions from water was conducted by a coupling approach of adsorption and photoelectrodeposition over a macroporous CeO2 photocatalyst loaded with ZnO. The photocatalyst was prepared by the hard template method and the impregnation method. The various size of silica spheres (0.05-0.4 µm) were used as a template for the photocatalyst, and the highest BET surface area (73.8 m2/g) was given in the sample prepared with the smallest silica sphere (0.05 µm). In the removal of lead ions, the porous sample showed a large amount of removal of lead ions. In addition, the ZnO loaded catalysts showed a larger amount of removal for lead ions than an unloaded catalyst under the UV light irradiation. In the reaction, since zinc ions were simultaneously dissolved to the solution, it was suggested that this reaction was the ion-exchange reaction between lead ions and zinc ions and was promoted by the UV light irradiation. 

Page 8 of 81 | Total Record : 803


Filter by Year

2007 2026


Filter By Issues
All Issue 2026: BCREC Volume 21 Issue 1 Year 2026 (April 2026) (Issue in Progress) 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025) 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025) 2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025) 2025: BCREC Volume 20 Issue 1 Year 2025 (April 2025) 2025: Just Accepted Manuscript and Article In Press 2025 2024: BCREC Volume 19 Issue 4 Year 2024 (December 2024) 2024: BCREC Volume 19 Issue 3 Year 2024 (October 2024) 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024) 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue