cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 803 Documents
Characterization and Application of Aluminum Dross as Catalyst in Pyrolysis of Waste Cooking Oil Faten Hameed Kamil; Ali Salmiaton; Raja Mohamad Hafriz Raja Shahruzzaman; R. Omar; Abdulkareem Ghassan Alsultsan
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.557.81-88

Abstract

Aluminium dross, a waste material produced by dissolution of aluminum scrap, was characterized physically and chemically by various analysis techniques for a potential to be used as catalyst. Using catalyst from waste materials reduced the cost for synthesizing of new catalyst. An efficient catalyst derived from industrial solid waste was modified by acid washing for using in a pyrolysis of waste cooking oil. The modification of aluminum dross resulted in increased surface area (from 0.96 to 68.24 m2/g), acidity (from 315 to 748 µmol/g) and thermal stability. Pyrolysis waste cooking oil was used to test the performance of aluminum dross as catalyst before and after modification. The product analysis showed a better result than the unmodified material based on increased yield of bio-oil and improved selectivity. 
A Performance Study of Home-Made Co-Immobilized Lipase from Mucor miehei in Polyurethane Foam on The Hydrolysis of Coconut Oil to Fatty Acid Dwina Moentamaria; Maktum Muharja; Tri Widjaja; Arief Widjaja
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.2.3848.391-403

Abstract

Bio‐based fatty acids (FAs) produced through hydrolysis of natural oils and fats are promising chemical feedstocks for increasing  the economic value of renewable raw materials. In this work, lecithin, gelatin, PEG, and MgCl2 were employed as the co-immobilized material of crude lipase Mucor miehei immobilization on the polyurethane foam (PUF) matrix for hydrolysis of coconut oil to Free Fatty Acid (FFA). The unconventional immobilized technique was used through cross-linking and covalent bond. Single factor analysis and response surface method were utilized to determine the optimum conditions of the hydrolysis reaction. After optimization, co-immobilized lipase was examined for storage stability at a temperature of 4°C and reusability performance. The optimum conditions for coconut oil hydrolysis were obtained on the co-immobilized-PUF ratio, water-oil ratio, and reaction time of 20.17 w/w, 4.45 w/w, and 20 h, respectively. Under these conditions, the acid value as lauric acid enhanced 573% to 3.21 mg KOH/g oil. Storage stability attained through remaining activity on free lipase, PUF-lipase, PUF-co-immobilized-lipase were 9.89%, 42.3%, and 91.88%, respectively. In this study, the application of PUF-co-immobilized lipase in hydrolysis reactions can be reused up to 5 times. Characteristics of the addition of co-immobilized lipase have been analyzed using Fourier Transform Infra Red (FTIR) and Scanning Electron Microscope (SEM), showing the presence of functional groups binding and the changes in the surface matrix structure. 
Backmatter (Author Guideline, Publication Ethics, Copyright Transfer Agreement for Publishing Form)
Bulletin of Chemical Reaction Engineering & Catalysis 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.19596

Abstract

Backmatter (Author Guideline, Publication Ethics, Copyright Transfer Agreement for Publishing Form)
Nickel-phenanthroline Complex Supported on Mesoporous Carbon as a Catalyst for Carboxylation under CO2 Atmosphere Iman Abdullah; Riri Andriyanti; Dita Arifa Nurani; Yuni Krisyuningsih Krisnandi
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9733.111-119

Abstract

Carbon dioxide is a highly potential renewable C1 source for synthesis of fine chemicals. Utilization of CO2 in carboxylation reactions requires catalysts, such as: nickel complex for CO2 activation. However, the use of homogeneous catalysts in the reaction is still less efficient due to the difficulty of separating the product and catalyst from reaction mixture. Therefore, it is necessary to heterogenize the nickel complex in a solid support such as mesoporous carbon. In this report, mesoporous carbon (MC) prepared from phloroglucinol and formaldehyde through soft template method was used as a solid support for Ni-phenanthroline complex (Ni-phen). The catalyst was characterized by Fourier Transform Infra Red (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscope - Energy Dispersive X-Ray (SEM-EDX), and Surface Area Analyzer (SAA). The result of SAA characterization showed that the pore diameter of MC was 6.7 nm and Ni-phen/MC was 5.1 nm which indicates that the materials have meso-size pores. Ni-phen/MC material was then used as a heterogeneous catalyst in the carboxylation reaction of phenylacetylene under an ambient CO2 pressure. The reactions were carried out in several variations of conditions such as temperature, time and catalyst types. Based on the results of the reaction, the best conditions were obtained at 25 °C for 8 h of reaction time using Ni-phen/MC catalyst.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Reusable Catalyst of KF/Mg-Al Layered Double for Biodiesel Conversion and Optimization using Bohn-Behnken Design Totok Eka Suharto; Fethi Kooli; Sheikh Ahmad Izaddin Sheikh Mohd Ghazali; Is Fatimah
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.3.14485.497-507

Abstract

This work aimed to synthesize a reusable catalyst of KF/Mg-Al layered double hydroxide (KF/LDH) for a microwave-assisted biodiesel conversion from rice bran oil (RBO). The LDH was synthesized by co-precipitation method of Mg and Al precursors with additional surfactant of cetyl trimethyl ammonium followed by hydrothermal method, for furthermore, an impregnation procedure was applied to combine KF with LDH by using impregnation method. Instrumental analysis of materials was performed by XRD, gas sorption analysis, SEM-EDX, TEM and XPS method. Effect of KF loading onto LDH on the specific surface area and solid basicity was also studied. From the characterization by XRD, it can be concluded that the impregnation increased specific surface area of LDH without any structural destruction, which was also confirmed by the lattice fringe comparison by HRTEM analysis and surface analysis by XPS. The specific surface area enhancement is in line with the increasing solid basicity which directly enhanced the catalytic conversion of RBO into biodiesel. Statistical optimization of the use of KF/LDH was conducted by response surface methodology of Box-Behnken Design for the range of 2–4 g/100 mL of catalyst dose, 3–8 of the methanol to oil ratio, and 10–30 min of reaction time. It was revealed that all factors are significantly affect the yield. The KF/LDH catalyst is also reusable as it does not loss the activity until 5th cycles. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
One-Step Hydrothermal Synthesis of TiO2 Nanotubes and Photodegradation Activity towards Diazinon Haryati, Tanti; Diana, Alvina Nur; Sofiyah, Ovy; Nelumbium, Tusiana Putri; Andarini, Novita; Sulistiyo, Yudi Aris; Suwardiyanto, Suwardiyanto
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20056

Abstract

The study aimed to analyze how variations in TiO2/NaOH mole ratio, stirring time, and washing pH affect the formation process of TiO2 nanotubes (TNT) through one-stage hydrothermal. TiO2 micro powder was mixed with 10M NaOH with the variation of TiO2/NaOH mole ratio (0.005:1, 0.015:1, and 0.025:1). The hydrothermal process was then conducted at 130 ℃ in an autoclave for 24 h with stirring time intervals of 10, 15, and 20 minutes/h. The samples underwent 1 M HCl washing to produce diverse pH variations (pH = 2, pH = 3, and pH = 4). Characterization of the synthesized TNT was conducted using SEM, TEM, XRD, SAA, and UV-Vis DRS. After analysis of the micrographs revealed the fiber shape of the particles, it was noted that TNT particle size increased due to smaller mole ratio variation, longer stirring, and lower pH. The synthesized TNT featured a tubular morphology with an inner diameter of 3.30 nm, an outer diameter of 6.15 nm, and a wall thickness of 1.64 nm. The increase in sodium titanate content of the sample results in an increase in surface area. Additionally, small pore size contributes towards an increase in both surface area and total pore size. The best result of the TNT photocatalytic test against diazinon can be observed in the fifth sample with a mole ratio of 0.025:1, stirring time of 20 minutes/h, and washing pH of 3. With an irradiation time of 210 min, diazinon degradation reached 90%. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology Istadi Istadi; Suherman Suherman; Luqman Buchori
Bulletin of Chemical Reaction Engineering & Catalysis 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.5.2.797.103-111

Abstract

The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13) with favorable heating value (44,768 kJ/kg). © 2010 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Mesoporous Magnesium Oxide Adsorbent Prepared via Lime (Citrus aurantifolia) Peel Bio-templating for CO2 Capture A. H. Ruhaimi; C. C. Teh; Muhammad Arif Ab Aziz
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10505.366-373

Abstract

The utilization of the lime (Citrus aurantifolia) peel as a template can improve the adsorbent’s structural properties, which consequently affect its CO2 uptake capacity. Herein, a mesoporous magnesium oxide (MgO-lime (Citrus aurantifolia) peel template (LPT)) adsorbent was synthesized using an LPT. MgO-LPT demonstrated improved structural properties and excellent CO2 uptake capacity. Moreover, another MgO adsorbent was prepared via thermal decomposition (MgO-TD) for comparison. The prepared adsorbents were characterized by N2 physisorption, Fourier transform infrared spectroscopy and thermogravimetric analysis. The CO2 uptake of these adsorbents was under 100% CO2 gas and ambient temperature and pressure conditions. MgO-LPT exhibited a higher Brunauer–Emmett–Teller surface area, Barrett–Joyner–Halenda pore volume, and pore diameter of 23 m2.g−1, 0.142 cm3.g−1, and 24.6 nm, respectively, than those of MgO-TD, which indicated the mesoporous structure of MgO-LPT. The CO2 uptake capacity of MgO-LPT is 3.79 mmol CO2.g−1, which is 15 times that of MgO-TD. This study shows that the application of lime peel as a template for the synthesis of MgO adsorbents is a promising approach to achieve MgO adsorbents with enhanced surface area and thus increased CO2 capture performance. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Synthesis, Crystal Structure, Hirschfeld Surface Analysis and Catalytic Activity of a New Binuclear Zn(II) Complex Based on Homophthalic Acid and 2,2'-Bipyridine Ligands Li-Hua Wang; Xi-Shi Tai
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.4.16106.778-785

Abstract

A new binuclear Zn(II) complex, [Zn2L2(BIPY)2(H2O)2](1) (H2L = homophthalic acid, BIPY = 2,2'-bipyridine) has been synthesized by one-pot method of homophthalic acid, 2,2'-bipyridine, zinc acetate dihydrate, and NaOH in water/ethanol (v:v = 1:1) solution. The structure of complex (1) was characterized by IR and X-ray single-crystal diffraction analysis. The results show that each Zn(II) ion is five-coordinated with two carboxylic O atoms from two homophthalate ligands (O2, O3 or O2a, O3a), two N atoms from two 2,2'-bipyridine ligands (N1, N2 or N1a, N2a) and one O atom from coordinated water molecule (O5 or O5a), and forms a distorted trigonal bipyramid coordination geometry. Complex (1) forms 1D chained structure and 3D network structure by the p-p interaction of 2,2'-bipyridine ligands. The Hirschfeld surface analysis of complex (1) was calculated. The catalytic performance of complex (1) has also been investigated for the oxidation of benzyl alcohol under O2 atmosphere. The optimal reaction temperature and pressure were 100 °C and 0.3 MPa for complex (1). Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Synthesize and Characterization of Pt-supported Co-ZIF for Catalytic Hydrocracking and Hydroisomerization of n-Hexadecane Hidayati, Luthfiana Nurul; Aulia, Fauzan; Napitupulu, Sebastian Ulido; Adhyaksa, Gede Widia Pratama; Dahnum, Deliana
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20117

Abstract

Zeolitic Imidazole Frameworks (ZIFs) are prospective porous materials as catalyst support due to their relatively large surface area, and tunability in size, structure, and porosity. Recent studies have also shown that ZIF is the best candidate for various catalytic redox reactions such as the oxidation of benzyl aromatic hydrocarbons. In this study, the synthesized Pt catalyst supported on Co-ZIF was varied by the organic ligands: imidazole, benzimidazole, and 1-(3-aminopropyl) imidazole, then followed by impregnation of Pt precursor. The catalysts were characterized its physical and chemicals properties such as Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Brunauer Emmet Teller (BET), Temperature-Programmed Desorption (NH3-TPD and CO2-TPD). The prepared catalysts were evaluated for catalytic hydrocracking and hydroisomerization of n-hexadecane in a 100 ml-batch reactor. GC-MS analysis presented that the Pt/ZIF catalyst with imidazole ligands has better performance than others. Hence, the optimization of n-Hexadecane conversion was carried out by the Pt/ZIF-imidazole catalyst varying the amount of metal loading, time and temperature reaction. The results showed that the reaction temperature of 350 ºC using 20 bar H2 for 4 h and the addition of 15 wt% Pt successfully achieved 90.77% conversion and produced the highest yield of isomers and alkanes, 4.04% and 35.75%, respectively. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Page 7 of 81 | Total Record : 803


Filter by Year

2007 2026


Filter By Issues
All Issue 2026: BCREC Volume 21 Issue 1 Year 2026 (April 2026) (Issue in Progress) 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025) 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025) 2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025) 2025: BCREC Volume 20 Issue 1 Year 2025 (April 2025) 2025: Just Accepted Manuscript and Article In Press 2025 2024: BCREC Volume 19 Issue 4 Year 2024 (December 2024) 2024: BCREC Volume 19 Issue 3 Year 2024 (October 2024) 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024) 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue