Jurnal Rekayasa Proses
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles
10 Documents
Search results for
, issue
"Vol 13 No 2 (2019): Volume 13, Number 2, 2019"
:
10 Documents
clear
Pemanfaatan ekstrak protein dari kacang-kacangan sebagai koagulan alami: review
Hans Kristianto;
Susiana Prasetyo;
Asaf Kleopas Sugih
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.46292
Coagulation and flocculation are commonly used in water and wastewater treatment. Inorganic coagulant such as alum (Al2(SO4)3), ferrous sulphate (FeSO4), and polyaluminium chloride (PAC) are commonly used. These coagulants are known for its effectiveness and simple operation procedure. However, there are some drawbacks such as reduction in pH, potential negative health effect when the treated water is consumed, and large sludge volume. To overcome these problems, utilization of natural coagulants has been proposed. Based on its active coagulating agent, natural coagulant could be divided as polyphenolic, polysaccharides, and protein. Protein from beans and seeds is commonly used as the source of active coagulating agent, due to its effectiveness, availability, and relatively simple pretreatment is needed. Usually the protein is extracted by using 0.5-1 M NaCl solution as globulin is the major protein fraction in beans.The extracted protein could act as cationic polymer to neutralize negatively charged colloids through adsorption-charge neutralization mechanism. Extracted protein could work effectively to treat turbid and waste water with lower cost compared to alum. However, most of existing studies are still focused on small – pilot scale utilization thus further explorations are still needed.
Comparative study of nyamplung (Callophylum inophyllum) kernel oil obtained from mechanical and chemical extraction for biofuel production
Hanifah Widiastuti;
Meiti Pratiwi;
Godlief F. Neonufa;
Tatang H. Soerawidjaja;
Tirto Prakoso
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.42816
Nyamplung (Callophylum inophyllum) contains oil around 40-73% in its seed. It has recently gained recognition as a potential source for biofuel production. The oil recovery process from renewable sources such as nyamplung is widely carried out by using chemical extraction with solvents. Nevertheless, this method is considered costly and there are safety issues as well as environmental concerns related to the solvents used. Therefore, mechanical extraction has emerged as an alternative method. In this study, the nyamplung oil recovered by mechanical extraction via hydraulic press and chemical extraction utilizing Soxhlet extraction was compared. Soxhlet extraction was carried out by using n-hexane as a solvent with a temperature of 70 oC for 5 hours. Before the extraction process, the kernel was initially pretreated to reduce the particle sizes and the water content. The results show that the oil yield recovered using the hydraulic press is 58%, which is comparable with the value obtained from Soxhlet extraction (65%). The oil characteristics were also compared, and the profiling shows no significant difference in the properties (saponification value, acid value, and iodine value) of oils recovered using both methods. The composition of fatty acids was also analyzed for utilization as a biofuel feedstock. Higher content of oleic acid was observed in oil resulted from chemical extraction while mechanical extraction yielded oil with higher palmitic acid content.
Disosiasi H2S dalam gas alam pada temperatur ruang menggunakan katalisator MgO: pengaruh jumlah katalis dan laju alir massa
Devie Herdiansyah;
Sri Haryati;
Muhammad Djoni Bustan
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.43154
The presence of H2S in natural gas is very detrimental to ammonia industry because it can poison and deactivate steam reforming catalysts. In the ammonia plant Pusri-IB PT. Pusri Palembang, H2S was separated in the Desulfurizer Unit (201-D) by adsorption using ZnO adsorbent at low temperature (28 ° C). Unfortunately, in this process the ZnO adsorbent cannot be regenerated so that within one year the ZnO adsorbent will be saturated with sulfur. The alternative process of H2S separation is to dissociate H2S into its constituent elements (hydrogen and sulfur) with catalytic process. The magnesium oxide catalyst was chosen because magnesium oxide is a metal oxide compound widely known in the catalysis process and has two active sites. The highest H2S conversion that can be achieved by MgO catalyst is 92.29%. Unlike ZnO, MgO does not absorb H2S, but catalyzes the dissociation of H2S into hydrogen and solid sulfur without being changed consumed by the reaction itself so that the MgO catalyst has a longer life time than the ZnO adsorbent.
Pengaruh derajat keasaman (pH) dalam proses presipitasi hidroksida selektif ion logam dari larutan ekstrak spent catalyst
Kevin Cleary Wanta1;
Federick Dwi Putra;
Ratna Frida Susanti;
Gelar Panji Gemilar;
Widi Astuti;
Shinta Virdhian;
Himawan Tri Bayu Murti Petrus
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.44007
Nickel hydroxide [Ni(OH)2] is an important compound in producing rechargeable batteries. The synthesis of Ni(OH)2 can be carried out using a hydroxide precipitation method from a solution containing nickel (II) (Ni2+) ions. In this study, the synthesis of Ni(OH)2 was investigated from the solution of extracted spent catalyst using sulfuric acid (H2SO4) solution. The selective precipitation was conducted using sodium hydroxide (NaOH) solution and the degree of acidity (pH) was varied in the range of 4–14. The operating temperature was kept constant at 30oC. The experimental results showed that the optimum precipitation conditions of Al3+ and Ni2+ ions were obtained at different pH where the optimum pH values were 6 and 10, respectively. Precipitate samples were characterized and the results showed that the purity of Ni(OH)2 in those samples was 13.1%. The XRD results indicated that the structure of precipitate still contains other impurities, such as Na2SO4, Al(OH)3 and those compounds were mutually agglomerate.
Pengaruh medan elektromagnetik terhadap densitas dan vikositas pada vacuum residue
Akbar Ismi Aziz Pramito;
Sri Haryati;
Muhammad Djoni Bustan
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.43599
This study tested the effect of electromagnetic field on density and viscosity of vacuum residue from PT. PERTAMINA Refinery Unit III Plaju. The study was conducted using a batch reactor equipped with electromagnetic. The fixed variable in this study is the vacuum residue mass and cracking time, while the variables which are varied are reaction temperature and electromagnetic field. The study was conducted to see the effect of temperatures ranging from 100, 200, 300 and 400oC, and the use of electromagnets with electric currents of 0A, 5A, 10A, 15A and 20A on the density and viscosity of vacuum residue. The experiment compared the effect of the process with electromagnetic field and without electromagnetic field on the density and viscosity of vacuum residue. The results showed that the lowest density (0.874 g/cm3) and viscosity (0.481 cP) were obtained by using 20A electric current electromagnetic field at a temperature of 400oC.
Kinetics of anaerobic digestion of dairy fat waste with saponification pre-treatment
Rifki Wahyu Kurnianto;
Rochim Bakti Cahyono;
Wiratni Budhijanto
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.48959
Anaerobic digestion has been an attractive field of research in the era of energy crisis. Biogas, which is the product of anaerobic digestion, provides alternative energy, while at the same time it also prevents pollution due to organic waste accumulation. Among various organic wastes, dairy fat waste is a potential substrate for anaerobic digestion. Fat waste has high theoretical biogas potential because of its high lipid content. However, anaerobic digestion of organic waste with high lipid content is quite challenging. The main obstacle in anaerobic digestion of fat waste is its tendency to form insoluble floating layer on top of the liquid phase. This phenomenon hinders the access of hydrolytic bacteria to the substrate. Saponification is one of the methods to increase the solubility of the floating layer and hence to improve the availability of substrate for the bacteria. Saponification changes the lipid content into soap which has both polar and non-polar functional groups and the polar side will increase the solubility of the substrate in water. This study evaluated the effect of different dosage of base added as the reactant during saponification pre-treatment on the productivity of anaerobic digestion of dairy fat waste. The kinetics of the anaerobic digestion process was analyzed by mean of mathematical model. The variations of the alkaline dosages studied for saponification pre-treatment were 0.04 mol base/g sCOD; 0.02 mol base/g sCOD; and no pre-treatment for control reactor. This study proved that saponification increased the solubility of dairy fat waste. This result was confirmed by the hydrolysis constant value (kH) of 0.00782/day for reactor with saponification, which was twenty times of magnitude higher than the kH value of 0.00032/day in the reactor without saponification. However, the exposure to high pH during the saponification pre-treatment might somewhat inhibit indigenous acidogenic bacteria in the waste which results in lower methane yield in the reactors with saponification to be compared to the control reactor.
Studi kondisi operasi dalam pemisahan asam laktat dari produk konversi katalitik tandan kosong sawit melalui esterifikasi-hidrolisis
Johnner Parningotan Sitompul;
Ana Kemala Putri Jauhari;
Gun Gun Gumilar;
Yosandi Calimanto;
Carolus Borromeus Rasrendra
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.44195
Lactic acid is a platform chemical that is usually used to form various chemical products. Nowadays, the need of lactic acid is increasingly high especially for bio-based chemical as a substitute for petroleum-based one. Catalytic chemical conversion is seemingly potential to substitute the bioconversion pathway. This research aims to determine the best operating condition for separating lactic acid from its mixture (the catalytic conversion product of oil palm empty fruit bunch) by esterification-hydrolysis in order to produce the highest yield and purity. The esterification of the mixture was carried out by using n-butanol as a solvent and wet Amberlyst-15 as a catalyst. The esterification process was conducted by reacting n-butanol and lactic acid for 6 hours in a batch reactor. Hydrolysis was then followed by reacting organic phase as an esterification product and water in batch reactor system for 4 hours. The result showed that the higher reactant volume ratio, temperature, and catalyst concentration were used, the higher yield of both esterification and hydrolysis products would be. The highest esterification yield of 98.64%-w/w was achieved when the temperature was at 90oC, with a reactant volume ratio of 4, and the catalyst concentration of 2.5%-w/w. Moreover, the experiment results showed that the highest hydrolysis yield of 98.64%-w/w was achieved by the temperature of 90 oC, the reactant volume ratio of 20, and the catalyst concentration of 2.5%-w/w. It was revealed that the most significant variable for esterification was reactant volume ratio while both reactant volume ratio and temperature become the prominent variables for hydrolysis counterpart. Additionally, another modified method of separation was conducted by applying reactive distillation. This modified process increased the hydrolysis yield up to 82.34%-w/w by using pure butyl lactate as feed while the usage of the catalytic butyl lactate as feed could produce lactic acid with the yield of 74.01%-w/w.
The effect of biomass-water ratio on bio-crude oil production from Botryococcus braunii using hydrothermal liquefaction process
Laras Prasakti;
Rochmadi Rochmadi;
Arief Budiman
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.48963
The increasing demand of energy in Indonesia has led to the urgency to conduct research and development in renewable energy. Biomass is one of the largest renewable energy sources in Indonesia. For biomass to energy conversion, hydrothermal liquefaction (HTL) has been considered as one of the potential methods where biomass is processed using subcritical water to produce bio-oil, aqueous phase, gas, and solid product. In this research, the effect of biomass-water ratio on hydrothermal liquefaction (HTL) process of microalgae Botryococcus braunii has been investigated. The HTL was conducted using biomass/water ratio 1:10, 1:20 and 1:30 with various holding time for each ratio. The product was bio-crude oil with similar characteristics to crude oil. Experimental results showed that biomass-water ratio affected the distribution of bio-crude oil yields. For biomass-water ratio of 1:10 and 1:20, it was found that bio-crude oil yields reached a maximum at 20 minutes, while the highest bio-crude oil yield of 4% was obtained at biomass-water ratio of 1:10. On the other hand, with biomass-water ratio of 1:30, bio-crude oil yield was continuously increasing with holding time until it reached the maximum yield of 4% at 40 minutes of holding time. The aforementioned results indicated that the highest bio-crude oil yield was obtained using biomass-water ratio 1:10 and 20 minutes of HTL processing time.
Pengaruh proses swelling dengan supercritical gas CO2 terhadap penurunan energi ikatan senyawa hidrokarbon vacuum residue
Deby Ansyory;
Aditya Retno Utami;
Sri Haryati;
Muhammad Djoni Bustan
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.44784
The present study aims to develop technology to utilize a vacuum residue by reducing its density, viscosity and energy bonding, using a batch reactor equipped with CO2 injection gas in the form of a swelling process. The study was conducted by applying temperature varied between 60 and 100 °C and CO2 flux pressure varied between 1 and 5 MPa, respectively. The study of applying temperature and CO2 flux pressure are used to decrease the bond energy of hydrocarbon compounds in the form of solid vacuum residue. Furthermore, a series of reaction time was carried out started in the range of 10-30 minutes to obtain the optimum reaction time. The result showed that at temperature of 100°C, pressure of 5 MPa and variation of time, the density, viscosity, and decrease in energy bonding (ΔG) were in the range of 0.919-0.902 g/cm3, 495-166 cSt, and 8.627–6.436 J.s, respectively.
Synthesis of curcumin nanoparticle from Curcuma xanthorrhiza Roxb. extract by solvent-antisolvent precipitation method
Nur Rofiqoh Eviana Putri;
Annisa Amalia Ulfah;
Yuni Kusumastuti
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.50909
Curcumin is an active compound found in temulawak (Curcuma xanthorrhiza Roxb.) extract which is widely used for biomedical application. However, the utilization of curcumin is still limited due to its properties i.e. hydrophobicity, poor stability, and low water solubility. Modification of curcumin molecule and process optimization during the extraction and purification process is needed to minimize the aforementioned limitations. One of the approaches is producing curcumin in nano size. This present research aims to optimize the synthesis of curcumin nanoparticle from Curcuma xanthorrhiza Roxb. extract using solvent-antisolvent precipitation method. Curcumin colour stability was also enhanced by controlling the pH during raw materials preparation. The obtained curcumin nanoparticle was then characterized using particle size analysis (PSA). Result showed that Curcuma xanthorrhiza Roxb. extract colour could be controlled by maintaining acidic environment. At the pH of 3, yellow colour of extract was obtained, meanwhile at neutral pH, the colour of extract changed into dark brown. PSA result showed that optimum stirring condition of precipitation process was obtained using 500 rpm stirring rate for 45 minutes which resulted in curcumin nanoparticle in the size range of 164.37±3.29 nm. Thus, by controlling the pH of extract at 3 during extraction process and using optimum stirring condition at 500 rpm for 45 minutes during precipitation process, more stable and soluble curcumin was successfully produced.