cover
Contact Name
Rahmat Azis Nabawi
Contact Email
innengrls@gmail.com
Phone
+6281277328670
Journal Mail Official
innengrls@gmail.com
Editorial Address
Patenggangan Street, Number B 2, Block Monang, RT.007/RW.03, Air Tawar Barat, Padang Utara, Padang, Sumatera Barat, Indonesia
Location
Kota padang,
Sumatera barat
INDONESIA
Innovation in Engineering
ISSN : 30475473     EISSN : 30475473     DOI : https://ie.rlsociety.org/index.php/ie/oai
Core Subject : Engineering,
Innovation in Engineering is an international journal dedicated to publishing the latest research in the field of engineering. The journal serves as a platform for researchers, engineers and designers to share their innovative findings, methodologies and insights into the conceptualisation, development and implementation of various techniques. Overall, Innovations in Engineering plays an important role in disseminating innovative research, fostering collaboration and inspiring progress in the ever evolving field of engineering. The journal s rigorous peer review process ensures the publication of accurate and reliable information, thereby enhancing credibility and trust among its readers. It welcomes all contributions related to the latest innovations and developments in Engineering field.
Articles 4 Documents
Search results for , issue "Vol. 2 No. 1 (2025): Regular Issue" : 4 Documents clear
Stabilization of lateritic soil using cement and lime for road construction Kyaw, Htet Okkar; Kyaw, Nyan Myint
Innovation in Engineering Vol. 2 No. 1 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/ie.v2i1.18

Abstract

In developing countries, crushed rocks are mainly used in road subbase and base courses for road construction. As a result of extremely high fuel prices and lengthy travel times, particularly from Mokepalin, which is 92 miles from Yangon, the exorbitant costs of crushed rock aggregates for road building in Myanmar have therefore become a major concern. Due to energy consumption and carbon emissions, this dependence on remote sources results in increased building costs, project delays, and environmental destruction. In Yangon, local marginal materials (lateritic soil) are also available in Hmawbi, Hlegu, Taikkyi and Twantay townships. According to the engineering properties of soil in term of CBR, Hmawbi lateritic soil is nearly the same as the Mokepalin. Therefore, lateritic soil from Hmawbi was selected as a case study material for this research in order to reduce costs and to be more economical. To evaluate the engineering properties of soil, laboratory tests including sieve analysis, Atterberg limits, UCS, compaction, and CBR testing were carried out. The purpose of this paper is to stabilize lateritic soils for possible use as materials for road sub base and base to substitute crushed rocks. Results showed that 2% of cement and lime content met subbase course for Unconfined Compressive Strength (UCS) values of 0.75 MPa and 1.75 MPa according to Joint Departments of the Army and Air Force and 16% of cement satisfied for road base course for UCS value of 5.36 MPa. The use soil lime mixture was found to be unsuitable for road base course. Cement stabilized lateritic soil proved to be stronger, durable and better than soil lime mixture for road construction.
Seismic risk assessment of existing RC structures using fragility-based approach Kyaw, Cho Wai Phyo; Mon, Khin Aye
Innovation in Engineering Vol. 2 No. 1 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/ie.v2i1.20

Abstract

This study investigates the seismic performance of two groups of existing reinforced concrete (RC) buildings: those designed and constructed according to older standards (pre-code RC buildings) and those designed and constructed in accordance with current seismic code requirements (moderate-code RC buildings). Recognizing the potential seismic vulnerability of these structures, this research aims to develop fragility curves to probabilistically assess their seismic performance. Non-linear time history analysis (NTHA) and incremental dynamic analysis (IDA) are employed, considering inter-story drift ratios (%ISDR) as key engineering demand parameters. These parameters are employed to link structural response to ground motion intensities (PGA) across various hazard levels, including Service Level Earthquake (SLE), Design Basic Earthquake (DBE), and Maximum Considered Earthquake (MCE). Eleven sets of ground motions, selected from the PEER database and matched to the Yangon target response spectrum, are used to simulate seismic loading. A representative 12-story RC frame with two plan aspect ratios is analyzed, considering material and geometric non-linearities. Five performance limit states (Fully operational, Immediate Occupancy, Damage Control, Life Safety, and Collapse Prevention) are defined based on FEMA 356. The developed fragility curves provide valuable insights into the seismic vulnerability of existing RC structures, informing the development of effective seismic risk-mitigating strategies and enhancing the resilience of urban areas.
Experimental study on strength reduction due to corrosion in reinforced concrete slabs with and without steel fibers Kyu, Hnin Hnin; Htwe, Khin Su Su
Innovation in Engineering Vol. 2 No. 1 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/ie.v2i1.21

Abstract

Corrosion significantly affects deterioration in reinforced concrete structural members, severely compromising their strength and durability, especially in regions with heavy rainfall and exposure in coastal areas. Currently, steel fibers have been increasingly used in the construction industry because of their enhanced durability, crack resistance and overall structural performance and it’s been emphasized for more research. Moreover, most previous studies have focused on corrosion damage in reinforced concrete slabs and beams, further research is needed to study the behavior of corrosion in RC slabs with steel fibers and the proneness of steel fibers to corrosion. This study aims to experimentally evaluate the impact of corrosion on the flexural strength and durability of steel fiber-reinforced concrete (SFRC) slabs comparing with conventional reinforced concrete (RC) slabs. An accelerated corrosion process was applied using a 5% sodium chloride electrolyte solution and a 5V output over 240 days. Corrosion levels in the slabs were assessed by using the Cor-Map technique. The results indicated that SFRC slabs exhibited higher corrosion levels than conventional RC slabs, likely due to the increased exposed area from the distributed steel fibers. The results of experimental flexural strength tests showed that the percentage reduction in flexural strength of the SFRC slab was greater than that of the conventional RC slab after corrosion. Although SFRC slabs exhibited faster corrosion due to the presence of steel fibers, fiber corrosion did not contribute to the corrosion of main steel bars and these slabs performed better than conventional RC slabs in terms of flexural strength and crack resistance in both before and after corrosion. According to this experimental research, the behavior of steel fiber corrosion in RC slabs is well known, and it showed that steel fibers could be effectively used in RC slabs and these results provided a valuable reference for assessing the residual capacities of existing steel fibers reinforced concrete slabs affected by corrosion.
Experimental study on damping properties of concretes under free vibration with different tyre wastes Win, Cho Zin; Htwe, Khin Su Su; Kyaw, Nyan Myint
Innovation in Engineering Vol. 2 No. 1 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/ie.v2i1.25

Abstract

Disposing of waste tires presents environmental challenges, making recycling into crumb rubber a sustainable solution, especially in developing countries. Moreover, concrete tends to be brittle, and incorporating crumb rubber enhances its energy absorption, which can help reduce the concrete’s brittleness. This study examines the effects of replacing fine aggregates with crumb rubber at 5% and 10% on concrete properties. Two types of crumb rubbers were used namely, low-quality and high-quality crumb rubber treated with CH3COOH solution. Results show that 5% crumb rubber improves compressive strength, and elastic modulus, while these properties decrease at 10% replacement. Free vibration tests using the logarithmic decrement method showed that higher rubber content increases the damping ratio, with 10% replacement yielding the best energy dissipation. Simulation using ANSYS Workbench validated the experimental findings, with natural frequencies and load-displacement behaviors closely matching experimental results. Using 5% crumb rubber enhances compressive strength, damping, and energy absorption, making concrete more versatile. This eco-friendly alternative supports sustainable construction while addressing tire waste disposal, highlighting its potential for dynamic load applications.

Page 1 of 1 | Total Record : 4