cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Mechatronics, Electrical Power, and Vehicular Technology
ISSN : 20873379     EISSN : 20886985     DOI : -
Core Subject : Engineering,
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Arjuna Subject : -
Articles 30 Documents
Search results for , issue "Vol 11, No 1 (2020)" : 30 Documents clear
Preliminary study of 50 W Class-E GaN FET amplifier for 6.78 MHz capacitive wireless power transfer Muharam, Aam; Mostafa, Tarek Mahmoud; Ahmad, Suziana; Masuda, Mitsuru; Obara, Daiki; Hattori, Reiji; Hapid, Abdul
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.22-29

Abstract

A preliminary study of Class-E radio frequency power amplifier for wireless capacitive power transfer (CPT) system is presented in this paper. Due to a limitation in coupling capacitance value, a high frequency operation of switching power inverter is necessary for the CPT system. A GaN MOSFET offers reliability and performance in a high frequency operation with an improved efficiency over a silicon device. Design specification related to the parallel load parameter, LC impedance matching and experimental analysis of the amplifier is explored. An experimental setup for the proposed inverter and its integration with the CPT system is provided, and the power efficiency is investigated. As a result, by utilizing a 6.78 MHz resonant frequency and a 50 Ω resistive load, 50 W of power has been transmitted successfully with an end to end system efficiency over 81 %. Additionally, above 17 W wireless power transfer was demonstrated successfully in the CPT system under 6 pF coupling with the efficiency over 70 %.
Preface MEV Vol 11 Iss 1 Pikra, Ghalya
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.%p

Abstract

Open feed organic heater pressure analysis on single-stage regenerative organic Rankine cycle performance Pikra, Ghalya; Rohmah, Nur; Pramana, Rakhmad Indra; Purwanto, Andri Joko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.30-37

Abstract

Single-stage regenerative organic Rankine cycle (SSRORC) is a system that is used for increasing the simple organic Rankine cycle (ORC) performance. Open feed organic heater (OFOH) addition in the ORC system increase power and efficiency of the system. This paper analyzes the SSRORC performance with a variation of P6/P1 ranges from 1.25 to 3.75 with an increment of 0.25, where P6 is the OFOH pressure at the inlet side and P1 is the pressure at the inlet pump 1, respectively. Hot water was used as the heat source with 100 °C and 100 l/min of temperature and volume flow rate as the initial data. R227ea, R245fa, and R141b were chosen as working fluids for performance analysis. The analysis was performed by calculating the heat input, heat loss, pump and turbine power, net power, and thermal efficiency through energy balance. Exergy input, exergy output, and exergy efficiency were analyzed through exergy balance. The results show that P6/P1 = 2 obtains the highest performance than the other pressure ratios for R227ea, while R245fa and R141b obtain the highest performance at P6/P1 = 2.25. R141b has better performance than the other two fluids with 10.97 % and 11.96 % for thermal and exergy efficiency. The results show that the ratio of OFOH pressure at the inlet side to the pressure at inlet pump 1 (P6/P1) in the middle value obtains the best performance.
Appendix MEV Vol 11 Iss 1 Pikra, Ghalya
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.%p

Abstract

A study effects of injection pressure and wall temperature on the mixing process of NOx and NH3 in Selective Catalytic Reduction system Aditya Wardana, Muhammad Khristamto; Lim, Ocktaeck
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.45-54

Abstract

Diesel engines are commonly used for public transportation on-road and off-road applications. Growth production of the diesel engine is very significant from year to year. Nitride Oxide (NOx) from diesel engine was one of the major sources of air pollution. Selective Catalytic Reduction (SCR) has been successfully used to reduce NOx from a diesel engine with a chemical reaction from ammonia (NH3). The mixing reaction between NOx and NH3 reaction can produce steam (H2O) and Nitrogen (N2). However, ammonia uniformity pattern usually not homogenization and the ammonia was difficult to mix with NOx. The constant air flows incomplete to assist the spray injector to spread NH3 to all corners of SCR. The impact study of turbulent phenomena and standard k-epsilon Low-Reynolds Number model to the mixing process in the SCR system using STARCCM+. The simulation studies are conducted under different pressure (4 to 6 bars), the injection rate (0.04 g/s) and temperature (338 K – 553 K) and the high pressure and high velocity magnitude creating turbulent swirl flow. The ammonia decomposition process and mixing process with NOx were investigated using a box with optical access. The simulation and numerical study results validated using back pressure value and the distribution of NOx concentration value from the catalyst outlet. The wall temperature will increase the urea evaporation to generate ammonia and gas pressure will increase the mixing process and chemical process in the SCR system. These reactions enable to optimize the SCR system technology which eventually able to reduce the NOx quantity from a diesel engine.
Back Cover MEV Vol 11 Iss 1 Pikra, Ghalya
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.%p

Abstract

Swarm control of an unmanned quadrotor model with LQR weighting matrix optimization using genetic algorithm Joelianto, Endra; Christian, Daniel; Samsi, Agus
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.1-10

Abstract

Unmanned aerial vehicle (UAV) quadrotors have developed rapidly and continue to advance together with the development of new supporting technologies. However, the use of one quadrotor has many obstacles and compromises the ability of a UAV to complete complex missions that require the cooperation of more than one quadrotor. In nature, one interesting phenomenon is the behaviour of several organisms to always move in flocks (swarm), which allows them to find food more quickly and sustain life compared with when they move independently. In this paper, the swarm behaviour is applied to drive a system consisting of six UAV quadrotors as agents for flocking while tracking a swarm trajectory. The swarm control system is expected to minimize the objective function of the energy used and tracking errors. The considered swarm control system consists of two levels. The first higher level is a proportional – derivative type controller that produces the swarm trajectory to be followed by UAV quadrotor agents in swarming. In the second lower level, a linear quadratic regulator (LQR) is used by each UAV quadrotor agent to follow a tracking path well with the minimal objective function. A genetic algorithm is applied to find the optimal LQR weighting matrices as it is able to solve complex optimization problems. Simulation results indicate that the quadrotors' tracking performance improved by 36.00 %, whereas their swarming performance improved by 17.17 %.
Rotordynamics analysis of solar hybrid microturbine for concentrated solar power Arifin, Maulana
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.38-44

Abstract

Microturbine based on a parabolic dish solar concentrator runs at high speed and has large amplitudes of subsynchronous turbo-shaft motion due to the direct normal irradiance (DNI) fluctuation in daily operation. A detailed rotordynamics model coupled to a full fluid film radial or journal bearing model needs to be addressed for increasing performance and to ensure safe operating conditions. The present paper delivers predictions of rotor tip displacement in the microturbine rotor assembly supported by a journal bearing under non-linear vibrations. The rotor assembly operates at 72 krpm on the design speed and delivers a 40 kW power output with the turbine inlet temperature is about 950 °C. The turbo-shaft oil temperature range is between 50 °C to 90 °C. The vibrations on the tip radial compressor and turbine were presented and evaluated in the commercial software GT-Suite environment. The microturbine rotors assembly model shows good results in predicting maximum tip displacement at the rotors with respect to the frequency and time domain.
Lux and current analysis on lab-scale smart grid system using Mamdani fuzzy logic controller Prasetyo, Bayu; Aziz, Faiz Syaikhoni; Handayani, Anik Nur; Priharta, Ari; Bin Che Ani, Adi Izhar
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.11-21

Abstract

The increasing need for electrical energy requires suppliers to innovate in developing electric distribution systems that are better in terms of quality and affordability. In its development, it is necessary to have a control that can combine the electricity network from renewable energy and the main network through voltage back-up or synchronization automatically. The purpose of this research is to create an innovative lux and current analysis on a lab-scale smart grid system using a fuzzy logic controller to control the main network, solar panel network and generator network to supply each other with lab-scale electrical energy. In the control, Mamdani fuzzy logic controller method is used as the basis for determining the smart grid system control problem solving by adjusting the current conditions on the main network and the light intensity conditions on the LDR sensor. Current conditions are classified in three conditions namely safe, warning, and trip. Meanwhile, the light intensity conditions are classified into three conditions namely dark, cloudy and bright. From the test results, the utility grid (PLN) is at active conditions when the load current is 0.4 A (safe) and light intensity is 1,167 Lux (dark). Then the PLN + PV condition is active when the load current is 1.37 (warning) and the light intensity is 8,680 lux (bright). Finally, the generator condition is active when the load current is 1.6 (trip) and the light intensity is 8,680 (bright). Based on the test results, it is known that the system can work to determine which source is more efficient based on the parameters obtained.
Front Cover MEV Vol 11 Iss 1 Pikra, Ghalya
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.%p

Abstract

Page 1 of 3 | Total Record : 30