cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Mechatronics, Electrical Power, and Vehicular Technology
ISSN : 20873379     EISSN : 20886985     DOI : -
Core Subject : Engineering,
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Arjuna Subject : -
Articles 596 Documents
Development of a Microcontroller-based Wireless Accelerometer for Kinematic Analysis Maria Clarissa Alvarez Carasco; Jan Pierre Potato Pizarro; Giovanni Alarkon Tapang
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 1 (2015)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2015.v6.1-8

Abstract

Wireless sensor networks (WSNs) allow real-time measurement and monitoring with less complexity and more efficient in terms of obtaining data when the subject is in motion. It eliminates the limitations introduced by wired connections between the sensors and the central processing unit. Although wireless technology is widely used around the world, not much has been applied for education. Through VISSER, a low cost WSN using nRF24L01+ RF transceiver that is developed to observe and analyze the kinematics of a moving object is discussed in this paper. Data acquisition and transmission is realized with the use of a low power and low cost microcontroller ATtiny85 that obtains data from the ADXL345 three-axis accelerometer. An ATtiny85 also controls the receiving module with a UART connection to the computer. Data gathered are then processed in an open-source programming language to determine properties of an object’s motion such as pitch and roll (tilt), acceleration and displacement. This paper discusses the application of the developed WSN for the kinematics analysis of a toy car moving on flat and inclined surfaces along the three axes. The developed system can be used in various motion detection and other kinematics applications, as well as physics laboratory activities for educational purposes.
A review of single-phase pressure drop characteristics microchannels with bends Endro Junianto; Jooned Hendrarsakti
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 12, No 1 (2021)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2021.v12.38-44

Abstract

Microfluidic use in various innovative research, many fields aimed at developing an application device related to handling fluid flows in miniature scale systems. On the other hand, on the use of micro-devices for fluid flow the existence of bends cannot be avoided. This research aims to make a comprehensive study of fluid flow characteristics through a microchannel with several possible bends. This study was conducted by comparing Reynolds number versus pressure drop in a serpentine microchannel to gain bends loss coefficient. The result showed that the fluid flow with Re 100 did not affect the pressure drop, but on the Reynolds number above that, the pressure drop was increased along with the appears of vortices in the outer and inner walls around the channel bends which causes an increase in an additional pressure drop. The other finding shows that the reduction in diameter bend tube can increase the pressure drop.
Solar-Based Fuzzy Intelligent Water Sprinkle System Riza Muhida; Momoh Jimoh E. Salami; Winda Astuti; Nurul Amalina Bt Ahmad Kasim; Nani Rahayu
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 2, No 2 (2011)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2011.v2.65-72

Abstract

A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 
Derivative load voltage and particle swarm optimization to determine optimum sizing and placement of shunt capacitor in improving line losses Mohamed Milad Baiek; Ahmad E. Esmaio; Muhammad Nizam; Miftahul Anwar; Hasan M.S. Atia
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 7, No 2 (2016)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2016.v7.67-76

Abstract

The purpose of this research is to study optimal size and placement of shunt capacitor in order to minimize line loss. Derivative load bus voltage was calculated to determine the sensitive load buses which further being optimum with the placement of shunt capacitor. Particle swarm optimization (PSO) was demonstrated on the IEEE 14 bus power system to find optimum size of shunt capacitor in reducing line loss. The objective function was applied to determine the proper placement of capacitor and get satisfied solutions towards constraints. The simulation was run over Matlab under two scenarios namely base case and increasing 100% load. Derivative load bus voltage was simulated to determine the most sensitive load bus. PSO was carried out to determine the optimum sizing of shunt capacitor at the most sensitive bus. The results have been determined that the most sensitive bus was bus number 14 for the base case and increasing 100% load. The optimum sizing was 8.17 Mvar for the base case and 23.98 Mvar for increasing load about 100%. Line losses were able to reduce approximately 0.98% for the base case and increasing 100% load reduced about 3.16%. The proposed method was also proven as a better result compared with harmony search algorithm (HSA) method. HSA method recorded loss reduction ratio about 0.44% for the base case and 2.67% when the load was increased by 100% while PSO calculated loss reduction ratio about 1.12% and 4.02% for the base case and increasing 100% load respectively. The result of this study will support the previous study and it is concluded that PSO was successfully able to solve some engineering problems as well as to find a solution in determining shunt capacitor sizing on the power system simply and accurately compared with other evolutionary optimization methods.
Modelling and Identification of Oxygen Excess Ratio of Self-Humidified PEM Fuel Cell System Edi Leksono; Justin Pradipta; Tua Agustinus Tamba
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2012.v3.39-48

Abstract

One essential parameter in fuel cell operation is oxygen excess ratio which describes comparison between reacted and supplied oxygen number in cathode. Oxygen excess ratio relates to fuel cell safety and lifetime. This paper explains development of air feed model and oxygen excess ratio calculation in commercial self-humidified PEM fuel cell system with 1 kW output power. This modelling was developed from measured data which was limited in open loop system. It was carried out to get relationship between oxygen excess ratio with stack output current and fan motor voltage. It generated fourth-order 56.26% best fit ARX linear polynomial model estimation (loss function = 0.0159, FPE = 0.0159) and second-order ARX nonlinear model estimation with 75 units of wavenet estimator with 84.95% best fit (loss function = 0.0139). The second-order ARX model linearization yielded 78.18% best fit (loss function = 0.0009, FPE = 0.0009).
Appendix MEV Vol 4 Iss 1 Aam Muharam
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 1 (2013)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2013.v4.%p

Abstract

Front Cover MEV Vol 10 Iss 1 Ghalya Pikra
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 10, No 1 (2019)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2019.v10.%p

Abstract

Braking System Modeling and Brake Temperature Response to Repeated Cycle Zaini Dalimus
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 2 (2014)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2014.v5.123-128

Abstract

Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.
Rancang Bangun Aplikasi Tele-Kendali Komputer Via Jaringan PSTN dengan Modul DTMF dan Mikrokontroller Attiny2313 Yuliardi Erdani; Hendy Rudiansyah
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 2 (2010)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2010.v1.61-68

Abstract

Extremely long distance control, hardly reachable actuator/target and costly network development  are some concerns within a distance control system. Such control is computer control for advertisements placed in tricky areas as locations over the bridge, at a junction, etc. The provider usually performs system inactivation in order to save energy. But until now, it is still difficult to find a system that can be turned on and off in remote manner. That is why the distant control using telephone can be the best alternative solution. Not only can the telephone be used in wide range of area, but also easily operated. The developed circuit in this research uses dual tone multiple frequency (DTMF). It is operated by pressing telephone button as control input for microcontroller. The microcontroller processes the input and controls the computer via relay and serial port. The result of experiment shows that the developed application is able to shut down and turn on computer as well as to apply software remotely. 
A CFD model for analysis of performance, water and thermal distribution, and mechanical related failure in PEM fuel cells Maher A.R. Sadiq Al-Baghdadi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 7, No 1 (2016)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2016.v7.7-20

Abstract

This paper presents a comprehensive three–dimensional, multi–phase, non-isothermal model of a Proton Exchange Membrane (PEM) fuel cell that incorporates significant physical processes and key parameters affecting the fuel cell performance. The model construction involves equations derivation, boundary conditions setting, and solution algorithm flow chart. Equations in gas flow channels, gas diffusion layers (GDLs), catalyst layers (CLs), and membrane as well as equations governing cell potential and hygro-thermal stresses are described. The algorithm flow chart starts from input of the desired cell current density, initialization, iteration of the equations solution, and finalizations by calculating the cell potential. In order to analyze performance, water and thermal distribution, and mechanical related failure in the cell, the equations are solved using a computational fluid dynamic (CFD) code. Performance analysis includes a performance curve which plots the cell potential (Volt) against nominal current density (A/cm2) as well as losses. Velocity vectors of gas and liquid water, liquid water saturation, and water content profile are calculated. Thermal distribution is then calculated together with hygro-thermal stresses and deformation. The CFD model was executed under boundary conditions of 20°C room temperature, 35% relative humidity, and 1 MPA pressure on the lower surface. Parameters values of membrane electrode assembly (MEA) and other base conditions are selected. A cell with dimension of 1 mm x 1 mm x 50 mm is used as the object of analysis. The nominal current density of 1.4 A/cm2 is given as the input of the CFD calculation. The results show that the model represents well the performance curve obtained through experiment. Moreover, it can be concluded that the model can help in understanding complex process in the cell which is hard to be studied experimentally, and also provides computer aided tool for design and optimization of PEM fuel cells to realize higher power density and lower cost.