cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Mechatronics, Electrical Power, and Vehicular Technology
ISSN : 20873379     EISSN : 20886985     DOI : -
Core Subject : Engineering,
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Arjuna Subject : -
Articles 596 Documents
Implementation of a LiFePO4 battery charger for cell balancing application Amin Amin; Kristian Ismail; Abdul Hapid
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 9, No 2 (2018)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2018.v9.81-88

Abstract

Cell imbalance has always happened in the series-connected battery. Series-connected battery needs to be balanced to maintain capacity and maximize the batteries lifespan. Cell balancing helps to dispart energy equally among battery cells. For active cell balancing, the use of a DC-DC converter module for cell balancing is quite common to achieve high efficiency, reliability, and high power density converter. This paper describes the implementation of a LiFePO4 battery charger based on the DC-DC converter module used for cell balancing application. A constant current-constant voltage (CC-CV) controller for the charger, which is a general charging method applied to the LiFePO4 battery, is presented for preventing overcharging when considering the nonlinear property of a LiFePO4 battery. The prototype is made up with an input voltage of 43V to 110V and the maximum output voltage of 3.75V, allowing to charge a LiFePO4 cell battery and balancing the battery pack with many cells from 15 to 30 cells. The goal is to have a LiFePO4 battery charger with an approximate power of 40W and the maximum output current of 10A. Experimental results on a 160AH LiFePO4 battery for some state of charge (SoC) shows that the maximum battery voltage has been limited at 3.77 volt and maximum charging current could reach up to 10.64 A. The results show that the charger can maintain battery voltage at the maximum reference voltage and avoid the LiFePO4 battery from overcharging.
Distributed Control System Design for Portable PC Based CNC Machine Roni Permana Saputra; Tinton Dwi Atmaja; Budi Prawara
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 1 (2014)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2014.v5.37-44

Abstract

The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.
Design and Implementation of Controller for Boost DC-DC Converter Using PI-LPF Based on Small Signal Model Slamet Kasbi; Estiko Rijanto; Rasli bin Abd Ghani
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 2 (2015)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2015.v6.105-112

Abstract

Boost DC-DC converters are used in many renewable energy sources including photovoltaic and fuel cell. They are also used in Uninterrupted Power Supply, inverters, electric vehicles and robots. In this paper a boost converter was built and its controller was developed using proportional integral (PI) action for current loop and low pass filter (LPF) for voltage loop. The controller was derived analytically based on small signal model. Experiment results show that the boost controller functions well in regulating the output voltage under a variation of load. During the start up without any load it can elevate input voltage from 119.6V to output voltage of 241.6V. The developed controller can regulate the output voltage smoothly under load variation from no load to sudden load of 352W. When a large sudden load change happens from 0W to 1042W the output voltage experiences small drop before it is recovered to 241.6V. It can be concluded that the developed control system satisfies the design specification.
Front Cover MEV Vol 1 No 2 Tinton Dwi Atmaja
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 2 (2010)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2010.v1.%p

Abstract

A compact design of multi-feeder data logging system for power quality measurement with a multiplexer and a single PQ transducer Hendri Novia Syamsir; Dalila Mat Said; Yusmar Palapa Wijaya
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 8, No 1 (2017)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2017.v8.1-10

Abstract

This paper presents a simple and costs effective equipment design multi-feeder data logger for recording and monitoring power quality. The system design uses remote supervising and multi-feeder data logging system (RESMOS). The data collected through resmos portable unit (RMPU) will automatically be saved with the format as binary and comma separated value (CSV). The time setting on the RMPU can be configured with minimum one minute per logging. This data logger uses a single transducer with a multiplexer for recording and monitoring ten channels of power quality at busbar. The system design has been validated with national metrology laboratory scientific and industrial research institute of Malaysia (SIRIM). This tool has the advantage that it can be used to measure harmonic data more than 21st at the same time for ten channels and equipped with software making it easier for analysis data with low operational costs versus another power quality equipment. The experimental results indicate that the proposed technique can accelerate data reading with conversion rate one sample per second for each channel. The device can be used to measure harmonic level and power quality with a confidence level above 95% and percentage error under 2.43% for total harmonics distortion (THD) and 1.72% for voltage harmonics.
Pendulum energy harvester with amplifier Michal Černý; Michal Dzurilla; Miloš Musil; Marek Gašparík
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 9, No 1 (2018)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2018.v9.25-31

Abstract

This paper presents a new principle of inductive vibration power harvester. Harvester is a pendulum that uses energy capacitor which is the mass. The mass is connected to the pendulum via a gearbox to achieve greater movement of the pendulum that generates an electromagnetic voltage. The harvester is developed at a very low frequency (1-10 Hz) which uses the rectified magnetic fluxes. Magnets are statically placed in the harvester case, and relative motion is carried out by the coil. Magnets are static, and the coil moves due to the weight ratio of magnets which the steel leads of the magnetic flux and the coil itself. This paper is focused on a harvester with a mechanical amplifier with the proposed technique is brings the plow harvester access with an auxiliary force. The experimental results indicate that the optimal results of the harvester with an accumulator for the resonant zone are 3.75 Hz, 7 Hz, and 10 Hz.
Front Cover MEV Vol 4 Iss 2 Aam Muharam
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 2 (2013)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2013.v4.%p

Abstract

Front Cover MEV Vol 10 Iss 2 Ghalya Pikra
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 10, No 2 (2019)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2019.v10.%p

Abstract

A Modified Gain Schedulling Controller by Considering the Sparseness Property of UAV Quadrotors M Qodar Abdurrohman; Reka Inovan; Ahmad Ataka; Hilton Tnunay; Ardhimas Wimbo; Iswanto Iswanto; Adha Cahyadi; Yoshio Yamamoto
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 1 (2015)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2015.v6.9-18

Abstract

This work presented the gain scheduling based LQR for Quadrotor systems. From the original nonlinear model, the system is always controllable and observable in various equilibrium points. Moreover, the linearized systems have a unique property that is known as sparse system. Hence, in order to implement the most efficient state feedback controller, post-filter and pre-filter were introduced to transform the state coordinate to decrease coupling between states. Finally, the gain scheduling systems using these facts was proposed. The system behavior was tested using the proposed controller. The numerical studies showed the effectiveness of the controller to achieve desired altitude, attitude, and its ability during the disturbance
Front Cover MEV Vol 12 Iss 1 Ghalya Pikra
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 12, No 1 (2021)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2021.v12.%p

Abstract