cover
Contact Name
Mochamad Tito Julianto
Contact Email
mtjulianto@apps.ipb.ac.id
Phone
+6282210017722
Journal Mail Official
milang@apps.ipb.ac.id
Editorial Address
Sekolah Sains Data, Matematika dan Informatika, Jl. Meranti, Kampus IPB Dramaga, Kabupaten Bogor 16680
Location
Kota bogor,
Jawa barat
INDONESIA
MILANG Journal of Mathematics and Its Applications
ISSN : -     EISSN : 29635233     DOI : https://doi.org/10.29244/milang.18.1
Core Subject : Education,
MILANG Journal of Mathematics and Its Applications, originally established in 2002 as the Journal of Mathematics and Its Applications (ISSN 1412-677X), transitioned to online publishing in 2018 and was renamed in 2022 to reflect its broadened scope. The name MILANG, a Sundanese word meaning “to count,” also stands for the journal’s key focus areas: Mathematics in Informatics, Life Sciences, Actuarial Science, Natural Sciences, and Graph Theory. This journal, published twice a year in June and December by the Department of Mathematics, IPB University, embraces an open access policy, making all articles freely available upon publication to support the global dissemination of innovative mathematical research.
Articles 6 Documents
Search results for , issue "Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications" : 6 Documents clear
KAJIAN NUMERIK PENDUGA FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR SUATU PROSES POISSON NONHOMOGEN NASIB, S. K.; MANGKU, I W.; SUMARNO, H.
MILANG Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.13.2.1-10

Abstract

Pada karya ilmiah ini dilakukan kajian numerik untuk melihat perilaku penduga tipe kernel bagi komponen periodik dari fungsi intensitas yang berbentuk eksponensial dari fungsi periodik ditambah tren linear pada suatu proses Poisson nonhomogen. Penyusunan penduga tipe kernel tersebut hanya menggunakan realisasi tunggal dari proses Poisson yang diamati pada interval pengamatan [0,n]. Pada kajian ini dipilih fungsi kernel seragam untuk mengevaluasi sifat-sifat asimtotik penduga dengan tujuan menentukan bandwidth yang dapat meminimumkan MSE, menenukan nilai n yang menghasilkan MSE penduga kurang dari 0.05, serta memverifikasi kenormalan asimtotik penduga.
ANALISIS WAVELET DAN ARIMA UNTUK PERAMALAN HARGA EMAS PT. ANTAM TBK INDONESIA KURNIA, M. T.; NUGRAHANI, E. H.; SUMARNO, H.
MILANG Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.13.2.11-22

Abstract

Forecasting is an estimation of the systematic process which is most likely to occur in the future based on past informations. Wavelet is one of forcasting method without parameter, which is used in signal analysis, data compression, and time series analysis. On the other hand ARIMA is the most general class of models for forecasting a time series, which can be stationarized by transformations, such as differencing and logging. This research present the forecasting of gold price in Indonesia using wavelet and ARIMA. The results show that wavelet gives the value of Mean Square Error (MSE) which is smaller than the ARIMA. Therefore wavelet is considered quite well in the analysis of time series data.
ANALISIS DINAMIKA MODEL PENYEBARAN PENYAKIT KOLERA FITRIANAH, A.; KHATIZAH, E.; KUSNANTO, A.
MILANG Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.13.2.23-34

Abstract

Model matematika penyakit kolera Liao & Wang  berbentuk SIR dengan konsentrasi bakteri yang terbagi dua yaitu bakteri yang sangat berbahaya (hyper infectious) dan bakteri yang kurang berbahaya (less infectious). Model ini menghasilkan dua titik tetap, yaitu titik tetap tanpa penyakit dan titik tetap endemik. Analisis kestabilan titik tetap ditentukan menggunakan kriteria Routh-Hurwitz. Dengan asumsi total populasi konstan, dinamika populasi pada kondisi titik tetap endemik menunjukkan bahwa peningkatan laju pertumbuhan bakteri akan mempercepat terjadinya wabah penyakit. Kecepatan terjadinya wabah akan lebih besar pada saat laju infeksi bakteri hyper infectious meningkat dibandingkan pada saat laju infeksi bakteri less infectious meningkat. Di sisi lain, laju kelahiran/kematian populasi manusia yang besar akan memperbesar pula kecepatan terjadinya wabah.
APLIKASI KONTROL OPTIMUM PADA MODEL PEMANENAN IKAN DI ZONA NONCADANGAN DENGAN MEMPERTIMBANGKAN ZONA CADANGAN NURBAYAN, R.; BAKHTIAR, T.; KUSNANTO, A.
MILANG Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.13.2.35-48

Abstract

Tulisan ini akan membahas analisa model matematika tentang sistem dinamika sumber daya perikanan pada suatu wilayah perairan. Wilayah perairan yang dipertimbangkan terdiri dari dua zona: zona noncadangan (ikannya boleh ditangkap) dan zona cadangan (ikannya tidak boleh ditangkap), di mana kepadatan populasi ikan di masing-masing zona dinyatakan dalam bentuk persamaan diferensial taklinear. Berdasarkan model tersebut, ingin diketahui bagaimana kebijakan penangkapan ikan yang optimal. Oleh karena itu, sebuah kebijakan penangkapan ikan yang optimal telah dianalisis menggunakan prinsip maksimum Pontryagin. Suatu contoh ilustratif telah diberikan dengan mempertimbangkan studi kasus penangkapan Sardinella lemuru di Selat Bali. Simulasi numerik tersebut memberikan informasi bahwa secara umum model dapat mengambarkan dinamika populasi ikan yang mempertimbangkan dua zona di atas.
L2-CONVERGENCE OF A NEAREST NEIGHBOR ESTIMATOR OF THE INTENSITY FUNCTION OF A CYCLIC POISSON PROCES MANGKU, I W.
MILANG Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.13.2.49-62

Abstract

Abstract. We consider the problem of estimating the intensity func- tion of a cyclic Poisson process. We suppose that only a single realization of the cyclic Poisson process is observed within a bounded 'window', and our aim is to estimate consistently the intensity function at a given point. A nearest neighbor estimator of the intensity function is proposed, and we show that our estimator is L2-consistent, as the window expands.AMS 2010 subject classifications: 62E20, 62G05, 62G20.Key words and phrases: cyclic Poisson process, cyclic intensity function, nonparametric estimation, nearest neighbor estimator, period, consis- tency, L2-convergence.
IDENTIFIKASI KONDISI KETERKONTROLAN BEBERAPA SISTEM PENDULUM SAKIRMAN, S.; BAKHTIAR, T.; KUSNANTO, A.
MILANG Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.13.2.63-71

Abstract

Dalam teori pengendalian (control theory), keterkontrolan (controllability) merupakan isu penting, di mana dalam masalah pengendalian yang dihadapi, input kendali harus dicari sedemikian sehingga keadaan sistem (system state) atau output sistem bergerak 

Page 1 of 1 | Total Record : 6


Filter by Year

2014 2014


Filter By Issues
All Issue Vol. 21 No. 1 (2025): MILANG Journal of Mathematics and Its Applications Vol. 20 No. 2 (2024): MILANG Journal of Mathematics and Its Applications Vol. 20 No. 1 (2024): MILANG Journal of Mathematics and Its Applications Vol. 19 No. 2 (2023): MILANG Journal of Mathematics and Its Applications Vol. 19 No. 1 (2023): MILANG Journal of Mathematics and Its Applications Vol. 18 No. 2 (2022): MILANG Journal of Mathematics and Its Applications Vol. 18 No. 1 (2022): MILANG Journal of Mathematics and Its Applications Vol. 17 No. 2 (2018): Journal of Mathematics and Its Applications Vol. 17 No. 1 (2018): Journal of Mathematics and Its Applications Vol. 16 No. 2 (2017): Journal of Mathematics and Its Applications Vol. 16 No. 1 (2017): Journal of Mathematics and Its Applications Vol. 15 No. 2 (2016): Journal of Mathematics and Its Applications Vol. 15 No. 1 (2016): Journal of Mathematics and Its Applications Vol. 14 No. 2 (2015): Journal of Mathematics and Its Applications Vol. 14 No. 1 (2015): Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications Vol. 13 No. 1 (2014): Journal of Mathematics and Its Applications Vol. 12 No. 2 (2013): Journal of Mathematics and Its Applications Vol. 12 No. 1 (2013): Journal of Mathematics and Its Applications Vol. 11 No. 2 (2012): Journal of Mathematics and Its Applications Vol. 11 No. 1 (2012): Journal of Mathematics and Its Applications Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications Vol. 10 No. 1 (2011): Journal of Mathematics and Its Applications Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications Vol. 9 No. 1 (2010): Journal of Mathematics and Its Applications Vol. 8 No. 2 (2009): Journal of Mathematics and Its Applications Vol. 8 No. 1 (2009): Journal of Mathematics and Its Applications Vol. 7 No. 2 (2008): Journal of Mathematics and Its Applications Vol. 7 No. 1 (2008): Journal of Mathematics and Its Applications Vol. 6 No. 2 (2007): Journal of Mathematics and Its Applications Vol. 6 No. 1 (2007): Journal of Mathematics and Its Applications Vol. 5 No. 2 (2006): Journal of Mathematics and Its Applications Vol. 5 No. 1 (2006): Journal of Mathematics and Its Applications Vol. 4 No. 2 (2005): Journal of Mathematics and Its Applications Vol. 4 No. 1 (2005): Journal of Mathematics and Its Applications Vol. 3 No. 2 (2004): Journal of Mathematics and Its Applications Vol. 3 No. 1 (2004): Journal of Mathematics and Its Applications Vol. 2 No. 2 (2003): Journal of Mathematics and Its Applications Vol. 2 No. 1 (2003): Journal of Mathematics and Its Applications Vol. 1 No. 2 (2002): Journal of Mathematics and Its Applications Vol. 1 No. 1 (2002): Journal of Mathematics and Its Applications More Issue