cover
Contact Name
Dede Kurniadi
Contact Email
dede.kurniadi@itg.ac.id
Phone
+6287880007464
Journal Mail Official
jistics@aptika.org
Editorial Address
Green Garden Residence C-87, Kabupaten Garut, Provinsi Jawa Barat, Indonesia, 44151
Location
Kab. garut,
Jawa barat
INDONESIA
Journal of Intelligent Systems Technology and Informatics
ISSN : -     EISSN : 3109757X     DOI : https://doi.org/10.64878/jistics
The Journal of Intelligent Systems Technology and Informatics (JISTICS) is an international peer-reviewed open-access journal that publishes high-quality research in the fields of Artificial Intelligence, Intelligent Systems, Information Technology, Computer Science, and Informatics. JISTICS aims to foster global scientific exchange by providing a platform for researchers, practitioners, and academics to disseminate original findings, critical reviews, and innovative applications. The journal is published three times a year (March, July, November) and may also publish special issues on emerging topics.
Articles 15 Documents
Skin Tone Classification in Digital Images Using CNN For Make-Up and Color Recommendation Nurapipah, Nida; Yuliana, Siti Sarah
Journal of Intelligent Systems Technology and Informatics Vol 1 No 3 (2025): JISTICS, November 2025
Publisher : Aliansi Peneliti Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64878/jistics.v1i3.29

Abstract

Human skin tone variation is an obstacle in the development of a digital beauty product recommendation system. The purpose of this study is to categorize skin tone into three groups (Black, Brown, and White). Using a Convolutional Neural Network (CNN) based on the refined EfficientNetB0 architecture on a balanced dataset of 1,500 facial images, each class consisting of 500 images. All images in the dataset have been resized to 224 × 224 pixels to match the model input and ensure data uniformity and compatibility with the EfficientNetB0 model architecture used. The dataset used was obtained from the Kaggle platform and processed through the normalization and augmentation stages. It was then evaluated through the validation process using the 5-fold cross-validation method. This model achieved a total accuracy level of 88.67%, with the white category demonstrating precision (0.93), recall (0.95), and F1-score (0.94), as well as the highest AUC of 0.99, indicating very satisfactory performance. Additionally, this system can offer personalized beauty product recommendations, including foundation shades, lipstick colors, and clothing color palettes, tailored to specific skin tones. This method enhances the user experience by providing accurate recommendations that adapt to various lighting conditions, making it suitable for use on digital beauty platforms.
Development of MyCare AI: A Dual-AI Mental Health Chatbot for Personalized Emotional Support Arief, Zaenal Syamsyul; Hamzah, Muhamad; Azham, Moch Nazham Ismul
Journal of Intelligent Systems Technology and Informatics Vol 1 No 2 (2025): JISTICS, July 2025
Publisher : Aliansi Peneliti Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64878/jistics.v1i2.34

Abstract

Access to mental health services remains a critical challenge in Indonesia, primarily due to societal stigma and limited availability of professional support. In response to this issue, this study introduces MyCare AI. This web-based mental health chatbot platform combines a Bi-LSTM-based emotion classification model with a generative conversational model provided by Google Vertex AI. This Dual-AI architecture enables the system to detect user emotions from Indonesian text inputs and deliver real-time, contextually appropriate, and empathetic responses. The emotion classification model is trained on a balanced English-language dataset representing four key emotional states: sadness, suicidal ideation, fear, and anger. The system employs a translation mechanism to convert Indonesian input into English before classification and then uses the detected emotion to condition the response generation process dynamically. The model achieved a classification accuracy of 95%, outperforming comparable models based on BERT-SVM and conventional LSTM architecture. This platform is intended for individuals who require immediate, anonymous, and continuous emotional support, including users in underserved or remote communities. MyCare AI represents a scalable and practical solution for digital emotional assistance and lays the groundwork for future integration with professional mental health services and native-language support frameworks. Key limitations include the system's reliance on real-time translation and an English-based dataset, highlighting the need for future development of culturally specific models.
From Local Features to Global Context: Comparing CNN and Transformer for Sundanese Script Classification Agustiansyah, Yoga; Fauzi, Dhika Restu
Journal of Intelligent Systems Technology and Informatics Vol 1 No 2 (2025): JISTICS, July 2025
Publisher : Aliansi Peneliti Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64878/jistics.v1i2.38

Abstract

The digital preservation of historical writing systems like Aksara Sunda is critical for cultural heritage, yet automated recognition is hindered by high character similarity and handwriting variability. This study systematically compares two dominant deep learning paradigms, Convolutional Neural Networks (CNNs) and Transformers, to evaluate the crucial trade-off between model accuracy and real-world robustness. Using a transfer learning approach, we trained five models (ResNet50, MobileNetV2, EfficientNetB0, ViT, and DeiT) on a balanced 30-class dataset of Sundanese script. Performance was assessed on a standard in-distribution test set and a challenging, independently collected Out-of-Distribution (OOD) dataset designed to simulate varied real-world conditions. The results reveal a significant performance inversion. While EfficientNetB0 achieved the highest accuracy of 96.9% on in-distribution data, its performance plummeted on the OOD set. Conversely, ResNet50, despite being lower in in-distribution accuracy, proved to be the most robust model, achieving the highest accuracy of 92.5% on the OOD data. This study concludes that for practical applications requiring reliable performance, the generalization capability demonstrated by ResNet50 is more valuable than the specialized accuracy of EfficientNetB0, offering a crucial insight for developing robust digital preservation tools for historical scripts.
Automatic Sentiment Annotation Using Grok AI for Opinion Mining in a University Learning Management System Julianto, Indri Tri; Sidqi, Muhammad Affan Al
Journal of Intelligent Systems Technology and Informatics Vol 1 No 3 (2025): JISTICS, November 2025
Publisher : Aliansi Peneliti Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64878/jistics.v1i3.42

Abstract

Sentiment analysis has become an essential tool in evaluating user feedback on digital learning platforms. Understanding student sentiments toward Learning Management Systems (LMS) in higher education can offer critical insights for system development and service improvement. This study aims to evaluate the effectiveness of AI-assisted sentiment labeling using Grok AI and ChatGPT compared to manual labeling for sentiment classification of student opinions on LMS at Institut Teknologi Garut. The research involved distributing an online questionnaire to 96 students across four academic levels, collecting open-ended responses regarding their LMS usage experiences. These responses were preprocessed through case folding, cleaning, tokenization, stopword removal, and stemming. The sentiment labels were assigned using Grok AI, ChatGPT, and manual annotation, and the resulting datasets were used to build classification models using the Naïve Bayes algorithm in Altair RapidMiner with 10-Fold Cross Validation. The performance evaluation shows that manual labeling yielded the highest accuracy (52.22%) and Cohen's Kappa (0.137), followed by ChatGPT (50.11%, 0.119) and Grok AI (48.00%, 0.087). Word cloud visualizations further revealed the dominant themes within each sentiment class, indicating that positive opinions emphasized helpfulness and ease of use, while negative ones focused on access issues and system lags. This research suggests that AI-assisted labeling methods can be viable alternatives, although manual labeling still offers slightly better accuracy.
User Sentiment Analysis X Towards Makan Bergizi Gratis Program Using Automatic Labeling Technique with Deepseek AI Julianto, Indri Tri; Nurpajar, Dini Siti
Journal of Intelligent Systems Technology and Informatics Vol 1 No 2 (2025): JISTICS, July 2025
Publisher : Aliansi Peneliti Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64878/jistics.v1i2.43

Abstract

Public perception of national nutrition initiatives is instrumental in shaping inclusive and data-driven policy development. In Indonesia, the "Makan Bergizi Gratis" (MBG) program introduced by President Prabowo has drawn significant attention, particularly on the X platform (formerly Twitter). This research topic was selected due to its national urgency and political significance, as the MBG program emerged as a key agenda during the 2024–2025 political transition. Therefore, examining public sentiment is essential to assess policy acceptance and identify areas for improvement. This study analyzes user sentiment toward the MBG policy using an automatic labeling approach supported by DeepSeek AI and the VADER Lexicon, followed by sentiment classification through the K-Nearest Neighbor (KNN) algorithm. The research involved five main stages: collecting 1,704 tweets from X between January 2024 and March 2025, preprocessing the text, conducting automatic sentiment labeling, applying TF-IDF for vectorization, handling class imbalance using the Synthetic Minority Over-sampling Technique (SMOTE), and classifying sentiments using KNN. The results indicate that without SMOTE, the VADER model achieved higher accuracy (93.49%) but lower Cohen's Kappa (0.16), while DeepSeek AI yielded lower accuracy (73.67%) but slightly higher Kappa (0.17). After SMOTE was applied, accuracy declined (VADER to 77.25%, DeepSeek AI to 64.72%), but Kappa scores improved significantly (VADER to 0.65, DeepSeek AI to 0.47), indicating more balanced and consistent sentiment predictions across classes. In conclusion, integrating automatic labeling, SMOTE, and KNN provides a reliable and scalable framework for analyzing large-scale sentiment on social media platforms, particularly in contexts with imbalanced opinion distributions.

Page 2 of 2 | Total Record : 15