cover
Contact Name
Dermiyati
Contact Email
dermiyati.1963@fp.unila.ac.id
Phone
+62721781822
Journal Mail Official
j.tnhtrop@gmail.com
Editorial Address
Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No. 1, Bandarlampung 35145, Indonesia
Location
Kota bandar lampung,
Lampung
INDONESIA
Journal of Tropical Soils
Published by Universitas Lampung
ISSN : 0852257X     EISSN : 20866682     DOI : http://dx.doi.org/10.5400/jts.v25i1
Core Subject : Agriculture, Social,
Journal of Tropical Soils (JTS) publishes all aspects in the original research of soil science (soil physic and soil conservation, soil mineralogy, soil chemistry and soil fertility, soil biology and soil biochemical, soil genesis and classification, land survey and land evaluation, land development and management environmental), and related subjects in which using soil from tropical areas.
Articles 12 Documents
Search results for , issue "Vol. 17 No. 1: Januari 2012" : 12 Documents clear
Carbon Storage and Carbon Dioxide Emission as Influenced by Long-term Conservation Tillage and Nitrogen Fertilization in Corn-Soybean Rotation Utomo, Muhajir; Buchari, Henrie; Banuwa, Irwan Sukri; Fernando, Lanang Koko; Saleh, Rahmat
JOURNAL OF TROPICAL SOILS Vol. 17 No. 1: Januari 2012
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2012.v17i1.75-84

Abstract

Although agriculture is a victim of environmental risk due to global warming, but ironically it also contributes to global greenhouse gas (GHG) emission. The objective of this experiment was to determine the influence of long-term conservation tillage and N fertilization on soil carbon storage and CO2 emission in corn-soybean rotation system. A factorial experiment was arranged in a randomized completely block design with four replications. The first factor was tillage systems namely intensive tillage (IT), minimum tillage (MT) and no-tillage (NT). While the second factor was N fertilization with rate of 0, 100 and 200 kg N ha-1 applied for corn, and 0, 25, and 50 kg N ha-1 for soybean production. Samples of soil organic carbon (SOC) after 23 year of cropping were taken at depths of 0-5 cm, 5-10 cm and 10-20 cm, while CO2 emission measurements were taken in corn season (2009) and soybean season (2010). Analysis of variance and means test (HSD 0.05) were analyzed using the Statistical Analysis System package. At 0-5 cm depth, SOC under NT combined with 200 kg N ha-1 fertilization was 46.1% higher than that of NT with no N fertilization, while at depth of 5-10 cm SOC under MT was 26.2% higher than NT and 13.9% higher than IT.  Throughout the corn and soybean seasons, CO2-C emissions from IT were higher than those of MT and NT, while CO2-C emissions from 200 kg N ha-1 rate were higher than those of 0 kg N ha-1 and 100 kg N ha-1 rates.  With any N rate treatments, MT and NT could reduce CO2-C emission to 65.2 %-67.6% and to 75.4%-87.6% as much of IT, respectively. While in soybean season, MT and NT could reduce CO2-C emission to 17.6%-46.7% and 42.0%-74.3% as much of IT, respectively.  Prior to generative soybean growth,   N fertilization with rate of 50 kg N ha-1 could reduce CO2-C emission to 32.2%-37.2% as much of 0 and 25 kg N ha-1 rates.
Relationship between Concentration and Discharge on Storm Events: Case Study at Cakardipa Catchment, Cisukabirus Subwatershed, Upper Ciliwung Watershed, Bogor, West Java Heryani, Nani; Pawitan, Hidayat; Jarwadi Purwanto, Mohamad Yanuar; Subagyono, Kasdi
JOURNAL OF TROPICAL SOILS Vol. 17 No. 1: Januari 2012
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2012.v17i1.85-95

Abstract

River nutrient loadings rates are frequently determined from discharge and hydrochemistry relationships using regression techniques. Unfortunately such methods as a conventional technique are inadequate for dealing with the problem such as differences in shape and direction of loop forming in individual and seasonal storms. Besides the relationships are nonlinear and time-dependent, they also varies from site to site. There is a currently method to study hysteresis between discharge and concentration of hydrochemistry. The relationship between discharge and solute concentration was investigated at Cakardipa catchment, Upper Ciliwung watershed, between the years of 2009-2010. The characteristics of the hysteresis loops were used to evaluate the temporal variation of the relative contribution to stream flow of source waters at Cakardipa Catchment including groundwater (CG), soil water (CSO), and rain water (CR). Chemical water analysis was carried out on 497 water samples on storm event. The chemical analysis of storm event of Februari 14, 2010 was carried out for the concentrations of K+, Ca2+, Mg2+, Na+, SiO2, SO42-NO3-, Cl-, and HCO3-. Results of the experiment showed that concentrations displayed circular hysteresis loops during the events, highlighting the complex relation among solutes and discharge during storm hydrographs. The solutes of K, Na, and Ca produced  concave curvature, anti-clockwise hysteresis loops, and positive  trend, so that classified as A2 loops with components ranking were CR> CG> CSO. .The solutes of Mg, SO4, NO3 assumed to come from groundwater produced convex curvature, clockwise hysteresis loops, and positive trend, indicating a concentration component ranking of CG > CR > CSO (C2 model). While Si and Cl produced clockwise hysteresis loops, indicating a concentration component ranking of CG> CSO> CR  which was C1 model.

Page 2 of 2 | Total Record : 12


Filter by Year

2012 2012


Filter By Issues
All Issue Vol 30, No 3: September 2025 (in Progress) Vol. 30 No. 3: September 2025 (in Progress) Vol 30, No 2: May 2025 Vol. 30 No. 2: May 2025 Vol 30, No 1: January 2025 Vol. 30 No. 1: January 2025 Vol. 29 No. 3: September 2024 Vol 29, No 3: September 2024 Vol 29, No 2: May 2024 Vol. 29 No. 2: May 2024 Vol. 29 No. 1: January 2024 Vol 29, No 1: January 2024 Vol 28, No 3: September 2023 Vol. 28 No. 3: September 2023 Vol. 28 No. 2: May 2023 Vol 28, No 2: May 2023 Vol 28, No 1: January 2023 Vol. 28 No. 1: January 2023 Vol 27, No 3: September 2022 Vol. 27 No. 3: September 2022 Vol. 27 No. 2: May 2022 Vol 27, No 2: May 2022 Vol 27, No 1: January 2022 Vol. 27 No. 1: January 2022 Vol 26, No 3: September 2021 Vol. 26 No. 3: September 2021 Vol. 26 No. 2: May 2021 Vol 26, No 2: May 2021 Vol. 26 No. 1: January 2021 Vol 26, No 1: January 2021 Vol 25, No 3: September 2020 Vol. 25 No. 3: September 2020 Vol. 25 No. 2: May 2020 Vol 25, No 2: May 2020 Vol 25, No 1: January 2020 Vol. 25 No. 1: January 2020 Vol. 24 No. 3: September 2019 Vol 24, No 3: September 2019 Vol 24, No 2: May 2019 Vol. 24 No. 2: May 2019 Vol 24, No 1: January 2019 Vol. 24 No. 1: January 2019 Vol. 23 No. 3: September 2018 Vol 23, No 3: September 2018 Vol. 23 No. 2: May 2018 Vol 23, No 2: May 2018 Vol. 23 No. 1: January 2018 Vol 23, No 1: January 2018 Vol. 22 No. 3: September 2017 Vol 22, No 3: September 2017 Vol. 22 No. 2: May 2017 Vol 22, No 2: May 2017 Vol 22, No 1: January 2017 Vol. 22 No. 1: January 2017 Vol. 21 No. 3: September 2016 Vol 21, No 3: September 2016 Vol 21, No 2: May 2016 Vol. 21 No. 2: May 2016 Vol. 21 No. 1: January 2016 Vol 21, No 1: January 2016 Vol 20, No 3: September 2015 Vol. 20 No. 3: September 2015 Vol. 20 No. 2: May 2015 Vol 20, No 2: May 2015 Vol. 20 No. 1: January 2015 Vol 20, No 1: January 2015 Vol. 19 No. 3: September 2014 Vol 19, No 3: September 2014 Vol. 19 No. 2: May 2014 Vol 19, No 2: May 2014 Vol. 19 No. 1: January 2014 Vol 19, No 1: January 2014 Vol 18, No 3: September 2013 Vol. 18 No. 3: September 2013 Vol 18, No 2: May 2013 Vol. 18 No. 2: May 2013 Vol 18, No 1: January 2013 Vol. 18 No. 1: January 2013 Vol. 17 No. 3: September 2012 Vol 17, No 3: September 2012 Vol 17, No 2: May 2012 Vol. 17 No. 2: May 2012 Vol 17, No 1: Januari 2012 Vol. 17 No. 1: Januari 2012 Vol 16, No 3: September 2011 Vol. 16 No. 3: September 2011 Vol 16, No 2: May 2011 Vol. 16 No. 2: May 2011 Vol 16, No 1: January 2011 Vol. 16 No. 1: January 2011 Vol 15, No 3: September 2010 Vol. 15 No. 3: September 2010 Vol 15, No 2: May 2010 Vol. 15 No. 2: May 2010 Vol 15, No 1: January 2010 Vol. 15 No. 1: January 2010 Vol 14, No 3: September 2009 Vol. 14 No. 3: September 2009 Vol. 14 No. 2: May 2009 Vol 14, No 2: May 2009 Vol. 14 No. 1: January 2009 Vol 14, No 1: January 2009 Vol 13, No 3: September 2008 Vol. 13 No. 3: September 2008 Vol 13, No 2: May 2008 Vol. 13 No. 2: May 2008 Vol. 13 No. 1: January 2008 Vol 13, No 1: January 2008 More Issue