cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Core Subject : Engineering,
Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering.
Arjuna Subject : -
Articles 74 Documents
Search results for , issue "Vol 13, No 3: June 2024" : 74 Documents clear
Robust optimal control for uncertain wheeled mobile robot based on reinforcement learning: ADP approach Doan, Hoa Van; Thi-Thuy Vu, Nga
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.7054

Abstract

This paper presents a robust optimal control approach for the wheel mobile robot system, which considers the effects of external disturbances, uncertainties, and wheel slipping. The proposed method utilizes an adaptive dynamic programming (ADP) technique in conjunction with a disturbance observer. Initially, the system's state space model is formulated through the utilization of kinematic and dynamic models. Subsequently, the ADP method is employed to establish an online adaptive optimal controller, which solely relies on a single neural network for the purpose of function approximation. The utilization of the disturbance observer in conjunction with the compensation controller serves to alleviate the effects of disturbances. The Lyapunov theorem establishes the stability of the complete closed-loop system and the convergence of the weights of the neural network. The proposed approach has been shown to be effective through simulation under the effect of the disturbances and the change of the desired trajectory.
A cost-effective ECG monitoring in rural areas: leveraging artificial neural networks for efficient healthcare solutions Rahaman, Md Obaidur; Kashem, Mohammod Abul
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6866

Abstract

Cardiovascular diseases engender serious public health concerns in developing nations since access to specialized medical equipment is often limited and standard treatment expenses can be prohibitive. This study proposes an efficient and relatively affordable electrocardiogram (ECG) monitoring system that reads and analyzes a person's electrocardiogram data to provide affordable and quality healthcare solutions. The device initially extracts features from electrocardiogram records by reading electrical signals in the heart. Extracted data are then analyzed by a trained deep learning model to determine precisely if the heart is in a healthy state or undergoing complexities. Experimental results showed that the fine-tuned ANN architecture outperformed the state-of-the-art architectures in this field with an accuracy of 98.95%. The data can also be sent to specialists through an MQTT server if necessary, allowing for remote diagnosis and treatment. The system is intended to be deployed in countries where rural regions lack access to specialized healthcare equipment and professionals. Additionally, the device is inexpensive and, hence can be made accessible to people with limited affordability.
The effectiveness of a hybrid MPPT controller based on an artificial neural network and fuzzy logic in low-light conditions Hichem, Louki; Leila, Merabet; Amar, Omeiri
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6416

Abstract

Technological advancement and economic progress have made power consumption a big issue. Concern is growing as traditional energy sources dwindle. In the future, numerous fossil fuels will be insufficient to satisfy human requirements. This motivates research into the feasibility of using renewable energy sources. Renewable energy sources offer a multitude of advantages, including their cost-effectiveness, lack of environmental impact, and sustainable nature. Sunlight is currently the most prevalent source of energy because it is both free and readily accessible. Consequently, photovoltaic (PV) energy is gaining importance in the field of electricity generation. Tracking the maximum power point (MPP) in a solar PV system is challenging due to varying meteorological conditions (irradiance and temperature). To maximise the efficiency of a solar power installation, it is essential to monitor the PV array's optimum power point. This analysis compares the perturb and observe (PO), fuzzy logic (FL), and suggested artificial neural network (ANN)-fuzzy strategy for determining the MPP of a PV system with minimal radiation exposure. Simulation results show that at low irradiation levels, the proposed ANN-fuzzy maximum power point tracking (MPPT) unit controller is superior to the FL and PO MPPT controllers in terms of tracking maximum power.
Compact dual-band antenna design for sub-6 GHz 5G application Kadu, Mahesh; Pawase, Ramesh; Chitte, Pankaj; Ubale, Vilas S.
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.7521

Abstract

A design of a compact dual-band antenna for 5G application is presented in this research article. The dual-band operation includes the 3.6 GHz and 5.4 GHz frequency bands of the sub-6 GHz frequency band for 5G technology. The proposed antenna offers a compact design with satisfactory antenna performance parameters. Moreover, the dual-band antenna showcases the independent tuning ability for both frequency bands. The prototype of the dual-band antenna is manufactured and when tested for various antenna performance parameters shows a good agreement between the simulated and measured results. The proposed dual-band antenna has compact dimensions along with a peak gain of 2.2 dB and antenna efficiency of more than 90%.The antenna performance parameters are also compared with various dual-band antenna designs from the literature. The proposed dual-band antenna offers a compact design with satisfactory performance parameters and outperforms its counterparts.
Development of the fuzzy grid partition methods in generating fuzzy rules for the classification of data set Marbun, Murni; Sitompul, Opim Salim; Nababan, Erna Budhiarti; Sihombing, Poltak
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.5378

Abstract

The main weakness of complex and sizeable fuzzy rule systems is the complexity of data interpretation in terms of classification. Classification interpretation can be affected by reducing rules and removing important rules for several reasons. Based on the results of experiments using the fuzzy grid partition (FGP) approach for high-dimensional data, the difficulty in generating many fuzzy rules still increases exponentially as the number of characteristics increases. The solution to this problem is a hybrid method that combines the advantages of the rough set method and the FGP method, which is called the fuzzy grid partition rough set (FGPRS) method. In the Irish data, the rough set approach reduces the number of characteristics and objects so that data with excessive values can be minimized, and the fuzzy rules produced using the FGP method are more concise. The number of fuzzy rules produced using the FGPRS method at K=2 is 50%; at K=K+1, it is reduced by 66.7% and at K=2 K, it is reduced by 75%. Based on the findings of the data collection classification test, the FGPRS method has a classification accuracy rate of 83.33%, and all data can be classified.
An extreme gradient boost based classification and regression tree for network intrusion detection in IoT Chalichalamala, Silpa; Govindan, Niranjana; Kasarapu, Ramani
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6843

Abstract

Nowadays, modern technology includes various devices, networks, and apps from the internet of things (IoT), which consist of both positive and negative impacts on social, economic, and industrial effects. To address these issues, IoT applications and networks require lightweight, quick, and adaptable security solutions. In this sense, solutions based on artificial intelligence and big data analytics can yield positive outcomes in the realm of cyber security. This study presents a method called extreme gradient boost (XGBoost) based classification and regression tree to identify network intrusions in the IoT. This model is ideally suited for application in IoT networks with restricted resource availability because of its distributed structure and builtin higher generalization capabilities. This approach is thoroughly tested using botnet internet of things (BoT-IoT) new-generation IoT security datasets. All trials are conducted in a range of different settings, and a number of performance indicators are used to evaluate the effectiveness of the proposed method. The suggested study's findings provide recommendations and insights for situations involving binary classes and numerous classes. The suggested XGBoost model achieved 99.53% of accuracy in attack detection and 99.51% in precision for binary class and multiclass classifications, respectively.
Development of Arduino applications for IoT applications in software engineering education: a systematic literature review Yusop, Noorrezam; Moketar, Nor Aiza; Sadikan, Siti Fairuz Nurr
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.4506

Abstract

The continuous development of software applications is a necessary step in producing high-quality products that will consistently meet end-user expectations and stakeholder needs. Development of Arduino applications, embedded in a product’s hardware, can and should be considered at the software engineering phase itself, even though current practice dictates it be handled by product engineers. The method used in this investigation was based on a systematic literature review (SLR). Therefore, this paper depicts a gap that currently exists within the body of literature surrounding the development of Arduino applications for ‘internet of things’ (IoT) applications in software engineering education in commercial and research fields. The result of this study are two findings investigates: i) relevant Arduino application development used in software engineering and ii) method for applying software engineering for Arduino applications. The limitations and constraints of each technique in respect to Arduino apps were also examined in order to provide a better understanding of each body of study's weaknesses and strengths. We realise that these studies are still insufficient and need to be evaluated and improved further.
Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Ermatita, Ermatita; Noprisson, Handrie; Abdiansah, Abdiansah
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6883

Abstract

A good way to spread knowledge about Palembang songket woven cloth patterns is to use information technology, especially artificial intelligence technology. This study's main goal is to develop a ResNet model with dropout regularization methods and find out how dropout regularization affects the ResNet model for detecting Palembang songket fabric motif with more data. Data was collected in places like tujuh saudara songket, Zainal songket, songket PaSH, AMS songket, and batik, Ernawati songket, Nabilah collections, Ilham songket, and Marissa songket. We used eight class of data for this research. A dataset of 7,680 data for training, 960 data for validation, and 960 data for testing is a dataset that has been prepared to be implemented in experiments. In the final results, the experimental results for DResNet demonstrated that accuracy at the training stage was 92.16%, accuracy at the validation stage was 78.60%, and accuracy at the submission stage was 80.3%. The experimental results also show that dropouts are able to increase the accuracy of the ResNet model by adding +1.10% accuracy in the training process, adding +1.80% accuracy in the validation process, and adding +0.40% accuracy in the testing process.
Stereo matching algorithm using deep learning and edge-preserving filter for machine vision Abd Gani, Shamsul Fakhar; Miskon, Muhammad Fahmi; Hamzah, Rostam Affendi; Hamid, Mohd Saad; Kadmin, Ahmad Fauzan; Herman, Adi Irwan
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.5708

Abstract

Machine vision research began with a single-camera system, but these systems had various limitations from having just one point-of-view of the environment and no depth information, therefore stereo cameras were invented. This paper proposes a hybrid method of a stereo matching algorithm with the goal of generating an accurate disparity map critical for applications such as 3D surface reconstruction and robot navigation to name a few. Convolutional neural network (CNN) is utilised to generate the matching cost, which is then input into cost aggregation to increase accuracy with the help of a bilateral filter (BF). Winner-take-all (WTA) is used to generate the preliminary disparity map. An edge-preserving filter (EPF) is applied to that output based on a transform that defines an isometry between curves on the 2D image manifold in 5D and the real line to eliminate these artefacts. The transform warps the input signal adaptively to allow linear 1D filtering. Due to the filter's resistance to high contrast and brightness, it is effective in refining and removing noise from the output image. Based on experimental research employing a Middlebury standard validation benchmark, this approach gives high accuracy with an average non-occluded error of 6.71% comparable to other published methods.
A hybrid steganography and watermark algorithm for copyright protection by using multiple embedding approaches Zainal, Nasharuddin; Hoshi, Alaa Rishek; Ismail, Mahamod; T. Rahem, Abd Al-Razak; Muhsin Wadi, Salim
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6337

Abstract

In this modern era, it has become much simpler to replicate, sell, and copy the copyright owners' works without their permission as a result of the expansion of digitalization, and it is difficult to identify such violations, posing a threat to the creators' and copyright owners' rights. For many years, the internet has been regarded as one of the most serious threats to copyright, and the content available has varying levels of copyright protection. On the internet, there are numerous copyrighted works, including e-books, movies, news, and so on. Therefore, by using watermarking and steganography techniques, these issues can be solved, which are based on the author's signature information or logo. This paper concluded that the techniques of discrete cosine transform (DCT), discrete wavelet transform (DWT), one-time pad (OTP), and playfair are highly effective when used together to watermark an image or embed a secret message, our lab results validate that our algorithm scheme is robust against several sets of attacks, where the algorithm was assessed by computation of many evaluation metrics such as mean square error (MSE), signal-to-noise ratio (SNR), and peak signal-to-noise ratio (PSNR).

Filter by Year

2024 2024


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 6: December 2024 Vol 13, No 5: October 2024 Vol 13, No 4: August 2024 Vol 13, No 3: June 2024 Vol 13, No 2: April 2024 Vol 13, No 1: February 2024 Vol 12, No 6: December 2023 Vol 12, No 5: October 2023 Vol 12, No 4: August 2023 Vol 12, No 3: June 2023 Vol 12, No 2: April 2023 Vol 12, No 1: February 2023 Vol 11, No 6: December 2022 Vol 11, No 5: October 2022 Vol 11, No 4: August 2022 Vol 11, No 3: June 2022 Vol 11, No 2: April 2022 Vol 11, No 1: February 2022 Vol 10, No 6: December 2021 Vol 10, No 5: October 2021 Vol 10, No 4: August 2021 Vol 10, No 3: June 2021 Vol 10, No 2: April 2021 Vol 10, No 1: February 2021 Vol 9, No 6: December 2020 Vol 9, No 5: October 2020 Vol 9, No 4: August 2020 Vol 9, No 3: June 2020 Vol 9, No 2: April 2020 Vol 9, No 1: February 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 List of Accepted Papers (with minor revisions) More Issue