Bulletin of Electrical Engineering and Informatics
Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering.
Articles
50 Documents
Search results for
, issue
"Vol 8, No 3: September 2019"
:
50 Documents
clear
A comparative study of PSO, GSA and SCA in parameters optimization of surface grinding process
Teh Muy Shin;
Asrul Adam;
Amar Faiz Zainal Abidin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (746.308 KB)
|
DOI: 10.11591/eei.v8i3.1586
The selection of parameters in grinding process remains as a crucial role to guarantee that the machined product quality is at the minimum production cost and maximum production rate. Therefore, it is required to utilize more advance and effective optimization methods to obtain the optimum parameters and resulting an improvement on the grinding performance. In this paper, three optimization algorithms which are particle swarm optimization (PSO), gravitational search, and Sine Cosine algorithms are employed to optimize the grinding process parameters that may either reduce the cost, increase the productivity or obtain the finest surface finish and resulting a higher grinding process performance. The efficiency of the three algorithms are evaluated and comparedwith previous results obtained by other optimization methods on similar studies.The experimental results showed that PSO algorithm achieves better optimization performance in the aspect of convergence rate and accuracy of best solution.Whereas in the comparison of results of previous researchers, the obtained result of PSO proves that it is efficient in solving the complicated mathematical model of surface grinding process with different conditions.
Comparison on space charge and voltage distribution of high voltage insulator subjected to different contamination levels
N. A. Samuri;
Nordiana Azlin binti Othman;
M. A. M. Piah;
N. A. M. Jamail;
H. Rosli
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (694.851 KB)
|
DOI: 10.11591/eei.v8i3.1585
This paper presents the study of space charge distribution on high voltage (HV) insulators under different levels of contamination. Two types of HV insulators were used in this work particularly glass and porcelain insulators. A string of 4-unit glass and porcelain insulators with 33 kV of lines voltage was designed and simulated using QuickfieldTM software. Four levels of contamination layer with different thickness have been applied on the surface of insulators to observe the effect of space charge distribution. Simulation results show that different types of insulators used at transmission lines give different effects on charge and voltage distribution. It is also found that the amplitude of charge for a single porcelain insulator is much higher compared to a single glass insulator. Similarly for a string of 4-unit insulators, the voltage distribution along the creepage distance of porcelain insulators is much higher compared to glass insulators under all contamination levels.
Prediction of ammonia concentration in water based on microwave spectroscopy
S. K. Yee;
S. C. J. Lim;
Z. H. Liew;
M. Z. N. Shaylinda;
N. T. J. Ong
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (505.33 KB)
|
DOI: 10.11591/eei.v8i3.1599
Ammonia is a common pollutant in water as the result of runoff in agricultural areas where it is applied as fertilizer. It must be monitored regulary for safety purpose. The current testing technique does not allow on-site measurement as the equipment are bulky, the measurement process is time-consuming and tedious with additional mixing reagents. In this study, the presence of ammonia in distilled water is estimated from open-ended coaxial probe in the range of 200 MHz to 14000 MHz. Experimental results were obtained from two set of samples with seven different ammonia concentration each. The measurements are repeated thrice hence producing forty-two data sets with 550 points. Both curve fitting and multiple regression analysis were considered to perform valid ammonia concentration projection. Validation based on 5-fold and 10-fold cross validation suggested the feasibility of the technique as it presents root mean square error (RMSE) which is less than 0.02 in the ammonia prediction. Detection method based on open-ended probe would be convenient, simple and accurate method for in-situ determination of ammonia concentration.
Velocity control of a two-wheeled inverted pendulum mobile robot: a fuzzy model-based approach
Mustapha Muhammad;
Amir A. Bature;
Umar Zangina;
Salinda Buyamin;
Anita Ahmad;
Mohamad A. Shamsudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (725.05 KB)
|
DOI: 10.11591/eei.v8i3.1594
This paper presents the design of a fuzzy tracking controller for balancing and velocity control of a Two-Wheeled Inverted Pendulum (TWIP) mobile robot based on its Takagi-Sugino (T-S) fuzzy model, fuzzy Lyapunov function and non-parallel distributed compensation (non-PDC) control law. The T-S fuzzy model of the TWIP mobile robot was developed from its nonlinear dynamical equations of motion. Stabilization conditions in a form of linear matrix inequalities (LMIs) were derived based on the T-S fuzzy model of the TWIP mobile robot, a fuzzy Lyapunov function and a non-PDC control law. Based on the derived stabilization conditions and the T-S fuzzy model of the TWIP mobile robot, a state feedback velocity tracking controller was then proposed for the TWIP mobile robot. The balancing and velocity tracking performance of the proposed controller was investigated via simulations. The simulation result shows the effectiveness of the proposed control scheme.
Performance evaluation of comprehensive bandwidth utilization for 10-gigabit passive optical network
N. A. Ismail;
Sevia Mahdaliza Idrus;
R. A. Butt;
F. Iqbal;
A. M. Zin;
F. Atan
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (510.489 KB)
|
DOI: 10.11591/eei.v8i3.1595
Bandwidth allocation during upstream transmission is crucial to determine the efficiency and performance of a XG-PON. For XG-PON, bandwidth assignment is done based on T-CONT which represents a traffic class as per ITU recommendation. DBA scheme used in this paper is based on CBU to assign bandwidth to ONUs based on the T-CONT supporting QoS as per SLA. In this paper, CATV traffic is used as traffic generator which used for generation of Ethernet frames and results showed expected trend of mean upstream delay for traffic class T2, T3 and T4 as compared to recommended value which is below 1.5ms. These results prove that CBU can also be implemented on real time traffic.
Measuring the underwater received power behavior for 433 mhz radio frequency based on different distance and depth for the development of an underwater wireless sensor network
Muhammad Ramdhan M.S;
Muhammad Ali;
Nurzal Effiyana G;
Samura Ali;
Kamaludin M.Y
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (989.439 KB)
|
DOI: 10.11591/eei.v8i3.1604
Underwater wireless sensor network (UWSN) important to enhance the widely use of the application of the Internet of things (IoT) for underwater. Uses of the acoustics base of wave propagations are the best ways to establish the UWSN. But the unpracticality of the hardware due to the size and cost has limited the application of UWSN. Radio frequency (RF) wave propagation is the best way to overcome this situation. Low frequency of the RF wave is proven feasible and suitable for underwater communication. 433 MHz RF were chosen to measuring the underwater received power behavior between the transmitter node and receiver node based on different distance and depth. HC12 transceiver module was used as a transmitter and spectrum analyzer with the telescopic antenna was used as a receiver. The received power give a good reading when the transmitter note was at 0.5-meter depth with a maximum operating range within 12 meters from the receiver.
Virgin coconut oil dielectrical properties as electrical insulation material
Siti Syafiqah Mat Sauki;
Nor Asiah Muhamad;
Zawani Amirah Rasid
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (403.025 KB)
|
DOI: 10.11591/eei.v8i3.1603
Mineral oil played an important role as insulating liquid such as to reduce failure, ageing effect, increase the life span and heat transfer agent. Mineral oil had a good dielectric strength and cooling performance but it had serious negative environmental impact like non-biodegradable, non-renewable resource and difficult to dispose when it deteriorates completely. Hence, virgin coconut oil (VCO) was chosen as alternative to replace mineral oil since it biodegrades completely without toxic and easy to get in the tropical country. Three dielectric tests were conducted to investigate the dielectric properties of VCO. Those were breakdown voltage, water content and kinematic viscosity. A study about the effect of the moisture level of VCO on the breakdown voltage and kinematic viscosity was also presented. VCO and mineral oil also undergone heating process to reduce moisture in sample. The study showed that VCO has good potential breakdown voltage with the ability to absorb a lot of moisture keeping the KRAFT paper dry. However, VCO had very high kinematic viscosity compared to mineral oil. Further, the rate of breakdown voltage decreases with increasing of moisture of VCO was lower than mineral oil.
Top oil heat distribution pattern of ONAN corn oil based transformer with presence of hot spot study using FEMM
M. A. Husin;
Nordiana Azlin binti Othman;
N. A. Muhammad;
H. Kamarden;
M. S. Kamarudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (529.442 KB)
|
DOI: 10.11591/eei.v8i3.1602
Transformer thermal modelling is a crucial aspect to be considered as this may help the determination of heat capacity of transformer. This paper present, simulation study on Oil Natural Air Natural (ONAN) transformer heat distribution pattern with and without presence of hot spot temperature (HST). This paper aims to compare the effects of different HST value at different locations inside the transformer unit as well as to evaluate the top oil thermal behaviour of corn oil as cooling mechanism in a transformer. To achieve aforementioned objectives, three HSTs were introduced to the 30 MVA transformer winding to find the total heat build-up in the top of the transformer tank. The outcome of thermal properties is examined using x-y temperature plot. From the results found that the location of HST affects overall transformer’s temperature. HST at the top of the winding give a significant effect compared to when HST is at the bottom of the winding. It is also evident that the usage of corn oil reduced the temperature distribution of the transformer. The findings suggest that the temperature distribution study especially on transformer is important to monitor in-service transformer in a non-invasive manner.
Impact of security breach on the upstream delay performance of next generation gigabit passive optical networks
F. M. Atan;
Nadiatulhuda Zulkifli;
S. M. Idrus;
N. A. Ismail;
A. M. Zin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (397.845 KB)
|
DOI: 10.11591/eei.v8i3.1600
The next generation passive optical networks (NG-GPON) such as long reach GPON is the future-proof solution to answer the continuous demands for access user bandwidth and network expansion. However, security which is yet to be addressed in NG-GPON needs urgent attention as it will become more critical due to much longer distance, denser user population and more network elements. In addition, the longer propagation delay in NG-GPON can also lead to a more complex bandwidth allocation mechanism that is expected to operate in a dynamic manner. Among the highlights of recommendations for future implementation are improvements in the security aspect and the use of dynamic bandwidth allocation (DBA) algorithm that suit the characteristics of long reach GPON. Current PON is exposed to degradation attack, a security breach that can harm how bandwidth fairness mechanism among ONUs work. Thus, this project proposes a secured DBA mechanism for NG-PON that could overcome this particular threat. In specific, a detection phase will be included in the DBA mechanism to sense and subsequently mitigate abnormal behaviours among ONUs that are harmful to the goal of DBA i.e. to ensure QoS among ONUs and traffics. At the same time, careful attention is given on the delay parameter as it is a critical parameter that can affect DBA performance in long reach GPON. In this paper, preliminary analysis is shown that reveal how possibility of threats increase with increasing of distance and network elements.
Time series data measurement on electricity consumption for selected domestic appliances in typical terrace house of Malaysia
Naja Aqilah;
Sheikh Ahmad Zaki Shaikh Salim;
Aya Hagishima;
Nelidya Md Yusoff;
Fitri Yakub
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1840.736 KB)
|
DOI: 10.11591/eei.v8i3.1601
This paper describes the pattern of electricity consumption from total and selected domestic appliances at a typical terrace house in Malaysia. The measured appliances can be classified into four groups on the basis of pattern of use which are ‘standby’ (TV), ‘active’ (massage chair, charger of hand phone, laptop and power bank, washing machine, air-conditioners, iron, standing fan, shower heaters, rice cooker, toaster, microwave), ‘cold’ (refrigerator) and ‘cold and hot’ (water dispenser). The major contribution of monthly electricity consumption comes from ‘cold’ appliances that consume 118.8 kWh/month followed by ‘active’ appliances that consume 87.8 kWh/month and ‘cold and hot’ appliance with 52.5 kWh/month. ‘Standby’ appliances shown a small contribution to the total electricity with 0.9 kWh/month. The amount of energy consumed depends on time-of-use, power characteristics of particular appliances as well as occupancy period.