Nadiatulhuda Zulkifli
Universiti Teknologi Malaysia

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

Dynamic bandwidth allocation algorithm for long reach passive optical network Siti Hasunah Mohammad; Nadiatulhuda Zulkifli; Sevia Mahdaliza Idrus
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18787

Abstract

Next generation broadband access networks are gaining more interests from many key players in this field. The demands for longer reach and higher bandwidth are among the driving factors for such network as it can reach wider area up to 100 km, even beyond; has enhanced bandwidth capacity and transmission speed, but with low cost and energy consumption. One promising candidate is long reach passive optical network, a simplified network with reduced number of network elements, equipment interfaces, and even nodes; which leads to a significant reduction in the network’s capital expenditure and operational expenditure. Outcome of an extended reach often results in increased propagation delay of dynamic bandwidth allocation messages exchange between the optical line terminals and optical network units, leading to the degradations of bandwidth allocation and quality of service support. Therefore, an effective bandwidth allocation algorithm with appropriate service interval setup for a long reach network is proposed to ensure the delay is maintained under ITU-T G.987.1 standard requirement. An existing algorithm is improved in terms of service interval so that it can perform well beyond 100 km. Findings show that the improved algorithm can reduce the mean delay of high priority traffic classes for distance up to 140 km.
Efficient P2P data dissemination in integrated optical and wireless networks with Taguchi method M. A. Wong; Jamil Abedalrahim Jamil Alsayaydeh; Sevia Mahdaliza Idrus; Nadiatulhuda Zulkifli; M. Elshaikh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12776

Abstract

The Quality of Service (QoS) resource consumption is always the tricky problem and also the on-going issue in the access network of mobile wireless part because of its dynamic nature of network wireless transmissions. It is very critical for the infrastructure-less wireless mobile ad hoc network that is distributed while interconnects in a peer-to-peer manner. Toward resolve the problem, Taguchi method optimization of mobile ad hoc routing (AODVUU) is applied in integrated optical and wireless networks called the adLMMHOWAN. Practically, this technique was carry out using OMNeT++ software by building a simulation based optimization through design of experiment. Its QoS network performance is examined based on packet delivery ratio (PDR) metric and packet loss probabilities (PLP) metric that consider the scenario of variation number of nodes. During the performing stage with random mobile connectivity based on improvement in optimized front-end wireless domain of AODVUU routing, the result is performing better when compared with previous study called the oRia scheme with the improvement of 14.1% PDR and 43.3% PLP in this convergence of heterogeneous optical wireless network.
Impact of security breach on the upstream delay performance of next generation gigabit passive optical networks F. M. Atan; Nadiatulhuda Zulkifli; S. M. Idrus; N. A. Ismail; A. M. Zin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (397.845 KB) | DOI: 10.11591/eei.v8i3.1600

Abstract

The next generation passive optical networks (NG-GPON) such as long reach GPON is the future-proof solution to answer the continuous demands for access user bandwidth and network expansion. However, security which is yet to be addressed in NG-GPON needs urgent attention as it will become more critical due to much longer distance, denser user population and more network elements. In addition, the longer propagation delay in NG-GPON can also lead to a more complex bandwidth allocation mechanism that is expected to operate in a dynamic manner. Among the highlights of recommendations for future implementation are improvements in the security aspect and the use of dynamic bandwidth allocation (DBA) algorithm that suit the characteristics of long reach GPON. Current PON is exposed to degradation attack, a security breach that can harm how bandwidth fairness mechanism among ONUs work. Thus, this project proposes a secured DBA mechanism for NG-PON that could overcome this particular threat. In specific, a detection phase will be included in the DBA mechanism to sense and subsequently mitigate abnormal behaviours among ONUs that are harmful to the goal of DBA i.e. to ensure QoS among ONUs and traffics. At the same time, careful attention is given on the delay parameter as it is a critical parameter that can affect DBA performance in long reach GPON. In this paper, preliminary analysis is shown that reveal how possibility of threats increase with increasing of distance and network elements.
Last mile mobile hybrid optical wireless access network routing enhancement Adam Wong Yoon Khang; Shamsul J. Elias; J. Pusppanathan; Nadiatulhuda Zulkifli; N. H. Halim; Shapina Abdullah
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (658.334 KB) | DOI: 10.11591/eei.v8i1.1434

Abstract

This study focuses on mobile ad hoc networks (MANETs) that support Internet routing protocol imposing stringent resource consumption constraints of Quality of service (QoS). The mobile Internet causes the ongoing issue of inefficient use of the MANET resources due to its random nature of wireless environments. In this paper, the new improved architecture of the last mile mobile hybrid optical-wireless access network (adLMMHOWAN) is proposed and designed to tackle the arised issues. The proposed design is based on a unified wireless-wired network solution required the deployment of MANET-based wireless fidelity (WiFi) technology at the wireless front-end and wavelengths division multiplexing passive optical network (WDM PON) at the optical backhaul. The critical performance metrics such as network capacity and energy consumption based on modified AODVUU routing protocol using OMNeT++ software is analyzed with 2 scenarios, namely the number of nodes and mobility speed. This mode of communication results in better QoS network capacity of 47.07% improvement, with 26.85% reduction of lower energy resource consumption for mobile wireless front-end over passive optical network backhaul architecture when compared with the existing work of oRiq scheme that focus on improvement in MANETs.
Last mile mobile hybrid optical wireless access network routing enhancement Adam Wong Yoon Khang; Shamsul J. Elias; J. Pusppanathan; Nadiatulhuda Zulkifli; N. H. Halim; Shapina Abdullah
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1042.811 KB) | DOI: 10.11591/eei.v8i1.1434

Abstract

This study focuses on mobile ad hoc networks (MANETs) that support Internet routing protocol imposing stringent resource consumption constraints of Quality of service (QoS). The mobile Internet causes the on-going issue of inefficient use of the MANET resources due to its random nature of wireless environments. In this paper, the new improved architecture of the last mile mobile hybrid optical-wireless access network (adLMMHOWAN) is proposed and designed to tackle the arised issues. The proposed design is based on a unified wireless-wired network solution required the deployment of MANET-based wireless fidelity (WiFi) technology at the wireless front-end and wavelengths division multiplexing passive optical network (WDM PON) at the optical backhaul. The critical performance metrics such as network capacity and energy consumption based on modified AODVUU routing protocol using OMNeT++ software is analyzed with 2 scenarios, namely the number of nodes and mobility speed. This mode of communication results in better QoS network capacity of 47.07% improvement, with 26.85% reduction of lower energy resource consumption for mobile wireless front-end over passive optical network backhaul architecture when compared with the existing work of oRiq scheme that focus on improvement in MANETs.
Impact of security breach on the upstream delay performance of next generation gigabit passive optical networks F. M. Atan; Nadiatulhuda Zulkifli; S. M. Idrus; N. A. Ismail; A. M. Zin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (397.845 KB) | DOI: 10.11591/eei.v8i3.1600

Abstract

The next generation passive optical networks (NG-GPON) such as long reach GPON is the future-proof solution to answer the continuous demands for access user bandwidth and network expansion. However, security which is yet to be addressed in NG-GPON needs urgent attention as it will become more critical due to much longer distance, denser user population and more network elements. In addition, the longer propagation delay in NG-GPON can also lead to a more complex bandwidth allocation mechanism that is expected to operate in a dynamic manner. Among the highlights of recommendations for future implementation are improvements in the security aspect and the use of dynamic bandwidth allocation (DBA) algorithm that suit the characteristics of long reach GPON. Current PON is exposed to degradation attack, a security breach that can harm how bandwidth fairness mechanism among ONUs work. Thus, this project proposes a secured DBA mechanism for NG-PON that could overcome this particular threat. In specific, a detection phase will be included in the DBA mechanism to sense and subsequently mitigate abnormal behaviours among ONUs that are harmful to the goal of DBA i.e. to ensure QoS among ONUs and traffics. At the same time, careful attention is given on the delay parameter as it is a critical parameter that can affect DBA performance in long reach GPON. In this paper, preliminary analysis is shown that reveal how possibility of threats increase with increasing of distance and network elements.
Last mile mobile hybrid optical wireless access network routing enhancement Adam Wong Yoon Khang; Shamsul J. Elias; J. Pusppanathan; Nadiatulhuda Zulkifli; N. H. Halim; Shapina Abdullah
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1042.811 KB) | DOI: 10.11591/eei.v8i1.1434

Abstract

This study focuses on mobile ad hoc networks (MANETs) that support Internet routing protocol imposing stringent resource consumption constraints of Quality of service (QoS). The mobile Internet causes the on-going issue of inefficient use of the MANET resources due to its random nature of wireless environments. In this paper, the new improved architecture of the last mile mobile hybrid optical-wireless access network (adLMMHOWAN) is proposed and designed to tackle the arised issues. The proposed design is based on a unified wireless-wired network solution required the deployment of MANET-based wireless fidelity (WiFi) technology at the wireless front-end and wavelengths division multiplexing passive optical network (WDM PON) at the optical backhaul. The critical performance metrics such as network capacity and energy consumption based on modified AODVUU routing protocol using OMNeT++ software is analyzed with 2 scenarios, namely the number of nodes and mobility speed. This mode of communication results in better QoS network capacity of 47.07% improvement, with 26.85% reduction of lower energy resource consumption for mobile wireless front-end over passive optical network backhaul architecture when compared with the existing work of oRiq scheme that focus on improvement in MANETs.
Impact of security breach on the upstream delay performance of next generation gigabit passive optical networks F. M. Atan; Nadiatulhuda Zulkifli; S. M. Idrus; N. A. Ismail; A. M. Zin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (397.845 KB) | DOI: 10.11591/eei.v8i3.1600

Abstract

The next generation passive optical networks (NG-GPON) such as long reach GPON is the future-proof solution to answer the continuous demands for access user bandwidth and network expansion. However, security which is yet to be addressed in NG-GPON needs urgent attention as it will become more critical due to much longer distance, denser user population and more network elements. In addition, the longer propagation delay in NG-GPON can also lead to a more complex bandwidth allocation mechanism that is expected to operate in a dynamic manner. Among the highlights of recommendations for future implementation are improvements in the security aspect and the use of dynamic bandwidth allocation (DBA) algorithm that suit the characteristics of long reach GPON. Current PON is exposed to degradation attack, a security breach that can harm how bandwidth fairness mechanism among ONUs work. Thus, this project proposes a secured DBA mechanism for NG-PON that could overcome this particular threat. In specific, a detection phase will be included in the DBA mechanism to sense and subsequently mitigate abnormal behaviours among ONUs that are harmful to the goal of DBA i.e. to ensure QoS among ONUs and traffics. At the same time, careful attention is given on the delay parameter as it is a critical parameter that can affect DBA performance in long reach GPON. In this paper, preliminary analysis is shown that reveal how possibility of threats increase with increasing of distance and network elements.