cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Core Subject : Engineering,
Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering.
Arjuna Subject : -
Articles 2,901 Documents
Comparison on space charge and voltage distribution of high voltage insulator subjected to different contamination levels N. A. Samuri; Nordiana Azlin binti Othman; M. A. M. Piah; N. A. M. Jamail; H. Rosli
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (694.851 KB) | DOI: 10.11591/eei.v8i3.1585

Abstract

This paper presents the study of space charge distribution on high voltage (HV) insulators under different levels of contamination. Two types of HV insulators were used in this work particularly glass and porcelain insulators. A string of 4-unit glass and porcelain insulators with 33 kV of lines voltage was designed and simulated using QuickfieldTM software. Four levels of contamination layer with different thickness have been applied on the surface of insulators to observe the effect of space charge distribution. Simulation results show that different types of insulators used at transmission lines give different effects on charge and voltage distribution. It is also found that the amplitude of charge for a single porcelain insulator is much higher compared to a single glass insulator. Similarly for a string of 4-unit insulators, the voltage distribution along the creepage distance of porcelain insulators is much higher compared to glass insulators under all contamination levels.
Prediction of ammonia concentration in water based on microwave spectroscopy S. K. Yee; S. C. J. Lim; Z. H. Liew; M. Z. N. Shaylinda; N. T. J. Ong
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (505.33 KB) | DOI: 10.11591/eei.v8i3.1599

Abstract

Ammonia is a common pollutant in water as the result of runoff in agricultural areas where it is applied as fertilizer. It must be monitored regulary for safety purpose. The current testing technique does not allow on-site measurement as the equipment are bulky, the measurement process is time-consuming and tedious with additional mixing reagents. In this study, the presence of ammonia in distilled water is estimated from open-ended coaxial probe in the range of 200 MHz to 14000 MHz. Experimental results were obtained from two set of samples with seven different ammonia concentration each. The measurements are repeated thrice hence producing forty-two data sets with 550 points. Both curve fitting and multiple regression analysis were considered to perform valid ammonia concentration projection. Validation based on 5-fold and 10-fold cross validation suggested the feasibility of the technique as it presents root mean square error (RMSE) which is less than 0.02 in the ammonia prediction. Detection method based on open-ended probe would be convenient, simple and accurate method for in-situ determination of ammonia concentration.
Performance of europium aluminium doped polymer optical waveguide amplifier Saris, Nur Najahatul Huda; Hamzah, Azura; Ambran, Sumiaty; Mikami, Osamu; Ishigure, Takaki
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (808.925 KB) | DOI: 10.11591/eei.v8i4.1598

Abstract

In this paper, the graded index (GI) multimode rare-earth metal (RE-M) doped polymer optical waveguide amplifier has been prepared and tested optically. A 10-cm Europium Aluminum Benzyl Methacrylate ( was fabricated via a unique technique known as the “Mosquito Method” which utilizes a micro-dispenser machine. Optical gain from 75 to 150 µm circular core diameter waveguide of 13 wt.% concentration has been demonstrated and measured under forward pumping condition. The cladding monomer deployed in this research is Acrylate resin XCL01, which is a modified photocurable acrylate material. Fundamentally, -30 decibel (dBm) red light signal input and 23 dBm pump power of 532 nm green laser wavelength is implemented within the range of 580 to 640 nm optical amplification wavelength. A maximum gain of 12.96 dB at 617 nm wavelength has been obtained for a 100 µm core diameter of Eu-Al polymer optical waveguide. The effect of different coupler diameter for pumping and the comparison of insertion loss before and after amplification against the performance of the Eu-Al polymer waveguide amplifier are also studied. There exists an optimum core diameter of which the amplifier gain enhancement is at maximum value.
A simulation study of excitation coil design in single-sided mpi scanner for human body application Nurmiza Othman; Muhamad Fikri Shahkhirin Birahim; Wan Nurshazwani Wan Zakaria; Mohd Razali Md Tomari; Md Nor Ramdon Baharom; Luqman Hakim
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (826.837 KB) | DOI: 10.11591/eei.v8i4.1597

Abstract

Magnetic particle imaging (MPI), a tomographic imaging method has been introduced for 3D imaging of human body with some potential applications such as magnetic hyperthermia and cancer imaging. It involves three important elements: tracer development using magnetic nanoparticles (MNPs), hardware realization (scanner using excitation and pickup coils), and image reconstruction optimization. Their combination will produce a high quality of image taken from any biological tissue in the human body based on the secondary magnetic field signal from the magnetized MNPs that are injected into human body. A homogeneous and adequate magnetic field strength from an excitation coil is needed to enhance the quality of the secondary signal. However, the complex surface topography of human body and physical properties of an excitation coil influence the strength and the homogeneity of the magnetic field generation at the MNPs. Therefore, this work focused on finding alternative design of excitation coil used in single sided MPI to produce up to 2 mT with high homogeneity of field distribution in the MNPs at the varied depth of 10 to 30 mm under the excitation coil. We proposed several designs with variation in physical properties and coil arrangement based on simulation study carried out by using Ansys Maxwell.
Device simulation of perovskite solar cells with molybdenum disulfide as active buffer layer Ainon Shakila Shamsuddin; Puteri Nor Aznie Fahsyar; Norashikin Ahmad Ludin; Ibrahim Burhan; Salina Mohamad
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (807.745 KB) | DOI: 10.11591/eei.v8i4.1596

Abstract

Organo-halide Perovskite Solar Cells (PSC) have been reported to achieve remarkably high power conversion efficiency (PCE). A thorough understanding of the role of each component in solar cells and their effect as a whole is still required for further improvement in PCE. In this paper, the effect of Molybdenum Disulfide (MoS2) in PSC with mesoporous structure configuration was analyzed using Solar Cell Capacitance Simulator (SCAPS). With the MoS2 layer which having two-fold function, acting as a protective layer, by preventing the formation of shunt contacts between perovskite and Au electrode, and as a hole transport material (HTM) from the perovskite to the Spiro-OMETAD. As simulated, PSC demonstrates a PCE, ŋ of 13.1%, along with stability compared to typical structure of PSC without MoS2 (Δ ŋ/ŋ=-9% vs. Δ ŋ/ŋ=-6%). The results pave the way towards the implementation of MoS2 as a material able to boost shelf life which very useful for new material choice and optimization of HTMs.
Velocity control of a two-wheeled inverted pendulum mobile robot: a fuzzy model-based approach Mustapha Muhammad; Amir A. Bature; Umar Zangina; Salinda Buyamin; Anita Ahmad; Mohamad A. Shamsudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (725.05 KB) | DOI: 10.11591/eei.v8i3.1594

Abstract

This paper presents the design of a fuzzy tracking controller for balancing and velocity control of a Two-Wheeled Inverted Pendulum (TWIP) mobile robot based on its Takagi-Sugino (T-S) fuzzy model, fuzzy Lyapunov function and non-parallel distributed compensation (non-PDC) control law. The T-S fuzzy model of the TWIP mobile robot was developed from its nonlinear dynamical equations of motion. Stabilization conditions in a form of linear matrix inequalities (LMIs) were derived based on the T-S fuzzy model of the TWIP mobile robot, a fuzzy Lyapunov function and a non-PDC control law. Based on the derived stabilization conditions and the T-S fuzzy model of the TWIP mobile robot, a state feedback velocity tracking controller was then proposed for the TWIP mobile robot. The balancing and velocity tracking performance of the proposed controller was investigated via simulations. The simulation result shows the effectiveness of the proposed control scheme.
Performance evaluation of comprehensive bandwidth utilization for 10-gigabit passive optical network N. A. Ismail; Sevia Mahdaliza Idrus; R. A. Butt; F. Iqbal; A. M. Zin; F. Atan
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (510.489 KB) | DOI: 10.11591/eei.v8i3.1595

Abstract

Bandwidth allocation during upstream transmission is crucial to determine the efficiency and performance of a XG-PON. For XG-PON, bandwidth assignment is done based on T-CONT which represents a traffic class as per ITU recommendation. DBA scheme used in this paper is based on CBU to assign bandwidth to ONUs based on the T-CONT supporting QoS as per SLA. In this paper, CATV traffic is used as traffic generator which used for generation of Ethernet frames and results showed expected trend of mean upstream delay for traffic class T2, T3 and T4 as compared to recommended value which is below 1.5ms. These results prove that CBU can also be implemented on real time traffic.
Advancement of a smart fibrous capillary irrigation management system with an Internet of Things integration Muhammad Khairie Idham Abd Rahman; Mohamad Shukri Zainal Abidin; Mohd Saiful Azimi Mahmud; Salinda Buyamin; Mohamad Hafis Izran Ishak; Abioye Abiodun Emmanuel
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (989.364 KB) | DOI: 10.11591/eei.v8i4.1606

Abstract

This paper presents the development work for integrating an Internet of Things (IoT) with a fibrous capillary irrigation system based on the climatic demand estimated by the weather condition. The monitoring and control using an IoT system is critical for such application that is targeted for precision irrigation. The fibrous capillary irrigation system is managed by manipulating a water supply depth using the potential evapotranspiration (ETo). A soil mositure sensor was used to monitor the progress of the root water uptake and input the fuzzy logic system, to determine the water requirements for the crop medium. Experiment was conducted by using a Choy sum plant as the test crop grown in a greenhouse. The monitoring of the demand and management of the watering system was successful. The ETo data was able to approximate the crop water requirement in near real time.
Performance comparison of SVM and ANN for aerobic granular sludge Nur Sakinah Ahmad Yasmin; Norhaliza Abdul Wahab; Aznah Nor Anuar; Mustafa Bob
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (775.903 KB) | DOI: 10.11591/eei.v8i4.1605

Abstract

To comply with growing demand for high effluent quality of Domestic Wastewater Treatment Plant (WWTP), a simple and reliable prediction model is thus needed. The wastewater treatment technology considered in this paper is an Aerobic Granular Sludge (AGS). The AGS systems are fundamentally complex due to uncertainty and non-linearity of the system makes it hard to predict. This paper presents model predictions and optimization as a tool in predicting the performance of the AGS. The input-output data used in model prediction are (COD, TN, TP, AN, and MLSS). After feature analysis, the prediction of the models using Support Vector Machine (SVM) and Feed-Forward Neural Network (FFNN) are developed and compared. The simulation of the model uses the experimental data obtained from Sequencing Batch Reactor under hot temperature of 50˚C. The simulation results indicated that the SVM is preferable to FFNN and it can provide a useful tool in predicting the effluent quality of WWTP.
Measuring the underwater received power behavior for 433 mhz radio frequency based on different distance and depth for the development of an underwater wireless sensor network Muhammad Ramdhan M.S; Muhammad Ali; Nurzal Effiyana G; Samura Ali; Kamaludin M.Y
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (989.439 KB) | DOI: 10.11591/eei.v8i3.1604

Abstract

Underwater wireless sensor network (UWSN) important to enhance the widely use of the application of the Internet of things (IoT) for underwater. Uses of the acoustics base of wave propagations are the best ways to establish the UWSN. But the unpracticality of the hardware due to the size and cost has limited the application of UWSN. Radio frequency (RF) wave propagation is the best way to overcome this situation. Low frequency of the RF wave is proven feasible and suitable for underwater communication. 433 MHz RF were chosen to measuring the underwater received power behavior between the transmitter node and receiver node based on different distance and depth. HC12 transceiver module was used as a transmitter and spectrum analyzer with the telescopic antenna was used as a receiver. The received power give a good reading when the transmitter note was at 0.5-meter depth with a maximum operating range within 12 meters from the receiver.

Page 5 of 291 | Total Record : 2901


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 6: December 2024 Vol 13, No 5: October 2024 Vol 13, No 4: August 2024 Vol 13, No 3: June 2024 Vol 13, No 2: April 2024 Vol 13, No 1: February 2024 Vol 12, No 6: December 2023 Vol 12, No 5: October 2023 Vol 12, No 4: August 2023 Vol 12, No 3: June 2023 Vol 12, No 2: April 2023 Vol 12, No 1: February 2023 Vol 11, No 6: December 2022 Vol 11, No 5: October 2022 Vol 11, No 4: August 2022 Vol 11, No 3: June 2022 Vol 11, No 2: April 2022 Vol 11, No 1: February 2022 Vol 10, No 6: December 2021 Vol 10, No 5: October 2021 Vol 10, No 4: August 2021 Vol 10, No 3: June 2021 Vol 10, No 2: April 2021 Vol 10, No 1: February 2021 Vol 9, No 6: December 2020 Vol 9, No 5: October 2020 Vol 9, No 4: August 2020 Vol 9, No 3: June 2020 Vol 9, No 2: April 2020 Vol 9, No 1: February 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 List of Accepted Papers (with minor revisions) More Issue