cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Journal of Software Engineering
Published by IlmuKomputer.com
ISSN : -     EISSN : 23563974     DOI : -
Journal of Software Engineering adalah jurnal ilmiah berkala yang memuat hasil penelitian pada bidang software engineering dari segala aspek teori, praktis maupun aplikasi. Makalah dapat berupa makalah technical maupun survei perkembangan terakhir (state-of-the-art) penelitian software engineering.
Arjuna Subject : -
Articles 13 Documents
Pendekatan Level Data untuk Menangani Ketidakseimbangan Kelas pada Prediksi Cacat Software Saifudin, Aries; Wahono, Romi Satria
Journal of Software Engineering Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1146.976 KB)

Abstract

Dataset software metrics secara umum bersifat tidak seimbang, hal ini dapat menurunkan kinerja model prediksi cacat software karena cenderung menghasilkan prediksi kelas mayoritas. Secara umum ketidakseimbangan kelas dapat ditangani dengan dua pendekatan, yaitu level data dan level algoritma. Pendekatan level data ditujukan untuk memperbaiki keseimbangan kelas, sedangkan pendekatan level algoritma ditujukan untuk memperbaiki algoritma atau menggabungkan (ensemble) pengklasifikasi agar lebih konduktif terhadap kelas minoritas. Pada penelitian ini diusulkan pendekatan level data dengan resampling, yaitu random oversampling (ROS), dan random undersampling (RUS), dan mensintesis menggunakan algoritma FSMOTE. Pengklasifikasi yang digunakan adalah Naϊve Bayes.  Hasil penelitian menunjukkan bahwa model FSMOTE+NB merupakan model pendekatan level data terbaik pada prediksi cacat software karena nilai sensitivitas dan G-Mean model FSMOTE+NB meningkat secara signifikan, sedangkan model ROS+NB dan RUS+NB tidak meningkat secara signifikan.
Integrasi Pareto Fitness, Multiple-Population dan Temporary Population pada Algoritma Genetika untuk Pembangkitan Data Tes pada Pengujian Perangkat Lunak Maulana, Mohammad Reza; Wahono, Romi Satria; Supriyanto, Catur
Journal of Software Engineering Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (571.276 KB)

Abstract

Pengujian perangkat lunak memerlukan biaya yang mahal dan sering kali lebih dari 50% biaya keseluruhan dalam pengembangan perangkat lunak digunakan dalam tahapan ini. Untuk mengurangi biaya proses pengujian perangkat lunak secara otomatis dapat digunakan. Hal yang sangat penting dalam pengujian perangkat lunak secara otomatis adalah proses menghasilkan data tes. Pengujian secara otomatis yang paling efektif dalam menekan biaya adalah pengujian branch coverage. Salah satu metode yang banyak digunakan dan memiliki kinerja baik adalah algoritma genetika (AG). Salah satu permasalahan AG dalam menghasilkan data tes adalah ketiga target cabang dipilih memungkinkan tidak ada satupun individu yang memenuhi kriteria. Hal ini akan menyebabkan proses pencarian data tes memakan waktu lebih lama. Oleh karena itu di dalam penelitian ini diusulkan integrasi pareto fitness, multiple-population dan temporary population di dalam proses pencarian data tes dengan menggunakan AG (AG-PFMPTP). Multiple-population diusulkan untuk menghindari premature convergence. Kemudian pareto fitness dan temporary population digunakan untuk mencari beberapa data tes sekaligus, kemudian mengevaluasinya dan memasukkan ke dalam archive temporary population. Dari hasil pengujian yang telah dilakukan rata-rata generasi metode AG-PFMPTP secara signifikan lebih sedikit dalam menghasilkan data tes yang dibutuhkan dibandingkan metode AG standar ataupun AG dengan multiple-population (AG-MP) pada semua benchmark program yang digunakan. Hal tersebut menunjukkan metode yang diusulkan lebih cepat dalam mencari data tes yang dibutuhkan
Integrasi SMOTE dan Information Gain pada Naive Bayes untuk Prediksi Cacat Software Putri, Sukmawati Anggraini; Wahono, Romi Satria
Journal of Software Engineering Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (712.587 KB)

Abstract

Perangkat lunak banyak memainkan yang peran penting. Oleh karena itu, kewajiban untuk memastikan kualitas, seperti pengujian perangkat lunak dapat dianggap mendasar dan penting. Tapi di sisi lain, pengujian perangkat lunak adalah pekerjaan yang sangat mahal, baik dalam biaya dan waktu penggunaan. Oleh karena itu penting untuk sebuah perusahaan pengembangan perangkat lunak untuk melakukan pengujian kualitas perangkat lunak dengan biaya minimum. Naive Bayes pada prediksi cacat perangkat lunak telah menunjukkan kinerja yang baik dan menghsilkan probabilitas rata-rata 71 persen. Selain itu juga merupakan classifier yang sederhana dan waktu yang dibutuhkan dalam proses belajar mengajar lebih cepat dari algoritma pembelajaran mesin lainnya. NASA adalah dataset yang sangat populer digunakan dalam pengembangan model prediksi cacat software, umum dan dapat digunakan secara bebas oleh para peneliti. Dari penelitian yang dilakukan sebelumnya ada dua isu utama pada prediksi cacat perangkat lunak yaitu noise attribute dan  imbalance class. Penerapan teknik SMOTE (Minority Synthetic Over-Sampling Technique) menghasilkan hasil yang baik dan efektif untuk menangani ketidakseimbangan kelas pada teknik oversampling untuk memproses kelas minoritas (positif). Dan Information Gain digunakan dalam pemilihan atribut untuk menangani kemungkinan noise attribute. Setelah dilakukan percobaan bahwa penerapan model SMOTE dan Information Gain terbukti menangani imbalance class dan noise attribute untuk prediksi cacat software.

Page 2 of 2 | Total Record : 13


Filter by Year

2015 2015