cover
Contact Name
Noor Ariefandie.
Contact Email
noor.ariefandie@gmail.com
Phone
-
Journal Mail Official
pelita.iccri@gmail.com
Editorial Address
-
Location
Unknown,
Unknown
INDONESIA
Pelita Perkebunan
Core Subject : Agriculture,
Pelita Perkebunan, Coffee and Cocoa Research Journal (CCRJ): ISSN:0215-0212 Since its establishment in 1911, Indonesian Coffee and Cocoa Research Institute (ICCRI) formerly Besoekisch Proefstation, had published its research findings through a journal call Mededelingen van het Besoekisch Proefstation. Between 1948-1981 the research institute was under the supervision of Bogor Research Institute for Estate Crops, and published its research findings through De Bergcultures which was later changed to Menara Perkebunan. Since the institute held the national mandate for coffee and cocoa commodities, and due to rapid increase in the research findings, ICCRI published its first issue of Pelita Perkebunanjournal in April 1985. Pelita Perkebunanis an international journal providing rapid publication of peer-reviewed articles concerned with coffee and cocoa commodities based on the aspects of agronomy, plant breeding, soil science, crop protection, postharvest technology and social economy. Papers dealing with result of original research on the above aspects are welcome, with no page charge. Pelita Perkebunan is managed by Indonesian Coffee and Cocoa Research Institute (ICCRI), which publish the research findings not only for coffee and cocoa but also other commodities relevant with coffee and cocoa, i.e. shade trees, intercrops and wind breakers.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 26 No 3 (2010)" : 5 Documents clear
Yield performance of the cocoa clones of Sca 6 and DRC 15 resistant to vascular-streak dieback Agung Wahyu Susilo; Surip Mawardi; Sudarsianto Sudarsianto
Pelita Perkebunan (a Coffee and Cocoa Research Journal) Vol 26 No 3 (2010)
Publisher : Indonesian Coffee and Cocoa Research Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iccri.jur.pelitaperkebunan.v26i3.136

Abstract

AbstractThe characteristics of pod related to cocoa pod borer resistance (CPB, Conopomorpha cramerella Snell.) had been identified in a series study. This research has objective to evaluate performance of the characteristics using more diverse of genetic background to select criteria for selection. Genetic materials for this study were 25 cocoa clones which be planted in Central Sulawesi for resistant evaluation. Field evaluation of the resistance were assessed using the variable of the percentage of unextractable bean, number of entry and exit hole larvae by which the clones were grouped into 5 groups of resistance. A laboratory works were carried out to assess pod characteristics based on the number of trichome, granule of tannin and thickness the lignified-tissue of sclerotic layer using micro-technique method at the different level of pod maturity (3.0; 3.5; 4.0 months). Correlation between groups of those variables was analyzed using Canonical Correlation. The analysis performed a positive association between the thickness of sclerotic layer at the secondary furrow with the number of entry holes and the number of entry holes through sclerotic layer. The thickness performed a higher value of the coefficient in association with the variables of canonical for pod characteristics (0.59; 0.55; 0.43) and the variables of canonical for CPB resistance (0.54; 0.51; 0.39) that would presenting the characteristics of pod related to CPB resistance. Lignification at sclerotic layer was considered as genotypic expressions due to the thickness at the secondary furrow at 3.0, 3.5 and 4.0 months of pod maturity performed high value of broad-sense heritability i.e. 0.75, 0.89 and 0.92 respectively. A qualitative assessment of the lignification clearly differentiate the resistant clones (ARDACIAR 10) with the susceptible clones (ICCRI 04, KW 516 and KW 564).Key words : cocoa pod borer, Theobroma cacao L., pod characteristics, resistance
Carbon stock in different ages and plantation system of cocoa: allometric approach Fitria Yuliasmara; Aris Wibawa; Adi Prawoto
Pelita Perkebunan (a Coffee and Cocoa Research Journal) Vol 26 No 3 (2010)
Publisher : Indonesian Coffee and Cocoa Research Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iccri.jur.pelitaperkebunan.v26i3.137

Abstract

Cocoa (Theobroma cacao L.) like most tropical trees is recalcitrant in tissue culture. Somatic embryogenesis is generally efficient micropropagation technique to multiply elite material. However, Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. One of the factors often considered as a component of in vitro recalsitrance is a high phenolic content and oxidation of these compounds. In cocoa tissue culture accumulate large amounts of poliphenolics compounds which probably impair further development. This study was conducted to investigate the composition of phenolic compounds in cocoa flower and leaves, and their changes troughout the somatic embryogenesis process. Calli were induced in cacao floral and leaves explants on a half-strenght Murashige and Skoog medium containing 30 g/L Glucose and combination of 2,4 dichlorophenoxyacetic acid (2,4 D) with kinetin (kin). Total polyphenol content was observed on Sulawesi 1 cocoa clone. Embryogenic and non-embryogenic callus were also compared. The percentage of callus production from flower tissue is 85%, percentage of embryogenic callus 40 %, although  the percentage of somatic embryo production from embryogenic callus callus is 70%. The conservation of callus into somatic embryos followed by decline in phenol content and an increase in peroxidase. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. So that, phenolic compound can influence the production of calli and an absence the phenolic compound can enhance production of somatic embryo.Kata kunci: Theobroma cacao L., polifenol, embrio somatik, kalus, flavonoid, katekin, in vitro recalcitance
Decaffeination process characteristic of Robusta coffee in single column reactor using ethyl acetate solvent Sukrisno Widyotomo; Sri Mulato; Hadi K. Purwadaria; A.M Syarief
Pelita Perkebunan (a Coffee and Cocoa Research Journal) Vol 26 No 3 (2010)
Publisher : Indonesian Coffee and Cocoa Research Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iccri.jur.pelitaperkebunan.v26i3.138

Abstract

AbstractThis experiment aims to know the solar energy efficiency of four clones of cocoa that cultivated under three different shading plants. This experiment has been done from September until December 2013 located at Kaliwining Experiment Farm with characteristic 45 m above sea level, soil type is low humic gley, soil texture is silty clay loam, and climate classification type D based on Scmidht and Fergusson Classification. This experiment used Nested Design as Experimental Design with species of shading plant as main plot which are Teak (Tectona grandis L.), Krete (Cassia surattensis (Burm.) F.), Lamtoro (Leucaena leucocephala L.) and Cocoa clones as sub plot which are Sulawesi 1, Sulawesi 2, KKM 22, KW 165. The observation of solar energy efficiency consists of daily solar radiation intensity, solar radiation intensity above plant, solar radiation intensity under plant, and also plant total dry weight. The experimental result showed that there is differences (heterogenity) between shading location based on homogenity test by Bartlett Method. There are some interaction between the kind of shading plant and clones in parameter of interception efficiency, absorbtion efficiency, the efficiency of solar energy that caught by plant, and solar energy conversion efficiency. The efficiency of solar energy that caught by plant will affect the solar energy conversion efficiency with R2 = 0,86.  Keywords : Solar Energy Efficiency, Cocoa Clones, Shading Plant, Nested Design, Bartlett Method
Changes in procyanidins and tannin concentration as affected by cocoa liquor roasting Misnawi Jati
Pelita Perkebunan (a Coffee and Cocoa Research Journal) Vol 26 No 3 (2010)
Publisher : Indonesian Coffee and Cocoa Research Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iccri.jur.pelitaperkebunan.v26i3.139

Abstract

AbstractPratylenchus coffeae is a parasitic nematoda that infected the roots of some plants, one of them is coffee. The Infection of Pratylenchus coffeae cause root tissue damage that led to root lession and make root become rotten, it will interfere the ability of roots to absorb water and nutrients in the soil which resulted in the growth of plants. At the moment, control of Pratylenchus coffeae are following integrated pests management (IPM) program, which integrated between the use of coffee resistant clone and application of biological agents. Research on biological control was conducted more intensive, at the moment; due to it is friendlier save against environment and cheaper then using chemical nematicides. The research was conducted to know the effects of Micorrhiza Helper Bacteria (MHB),Pseudomonas diminuta and Bacillus subtilis in suppressing the population of P. coffeaeas well as their effect on growth of coffee seedling.  Coffee arabica (Coffea arabica L.) seedling one moth old were used in the experiment. The experiment prepared with eight treatments and five  replications, as follows: A (Pseudomonas diminuta with density of 108 cfu / ml), B (Pseudomonas diminuta with density of 2x108 cfu / ml), C (Bacillus subtilis with density of 108 cfu / ml ), D (Bacillus subtilis with density 2x108 cfu / ml), E (Carbofuran nematicide 5 g formulation / pot), F (Pseudomonas diminuta and Bacillus subtilis with each density of 108 cfu / ml), K- (Nematoda inoculation but without bacteria and nematicide), K+ (coffee seedling  without any additional treatment). The experiment was conducted for sixteen weeks or about four months. The results of the experiment showed that application of MHB could suppress population of P. coffeae and increase coffee seedling growth significantly. Inoculation of B. subtilis at 108 cfu per seedling suppressed significantly nematoda population of 71.3% compared with untreated seedling but inoculated with nematoda. It was not significant different with carbofuran treatment which could suppress nematoda population by 89.7%. The same result also occur on the treatment of P. diminuta at density level 2.108 cfu/seedling, which could suppress nematoda population by 64.2%. Seedling growth were treated with MHB also significantly increase compared with seedling without treatment and inoculation of nematodas, especially on the treatment of B.subtilis at density level 108 cfu and P.diminuta at density level of 108 cfu, with increasing level of 35.4% and 34.2 %, respectively.Keywords: MHB (Mycorrhiza Helper Bacteria), Arabica coffee (Coffea arabica L.),  Pratylenchus coffeae, Bacillus subtilis, Pseudomonas diminuta.
Performance and suggested alternative strategies in developing Indonesian cocoa export business Bambang Dradjat; Herman Herman
Pelita Perkebunan (a Coffee and Cocoa Research Journal) Vol 26 No 3 (2010)
Publisher : Indonesian Coffee and Cocoa Research Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iccri.jur.pelitaperkebunan.v26i3.140

Abstract

Black pod rot disease (BPRD) which is caused by Phytophthora palmivora is one of the main diseases of cocoa cultivations particularly in plantations with wet climate. Black pod rot can develop rapidly under high humidity environments, particularly during rainy seasons. This disease can cause loss of harvest of up to 46.63% in East Java. The various control efforts attempted so far have not resulted in significant improvements. Urea, in addition to functioning as fertilizer, can also produce the ammonia gas which is believed to be able to suppress black pod rot. This research aims to determine the effectiveness of black pod rot control using the combination of lime and urea. This research was conducted from June to September 2013. The materials used in test included sterile soil, black pod rot infected cocoa, urea, and agricultural lime. Observation results showed that ammonia could form from urea. Lime can increase the speed of the formation. The ammonia gas forming from 0.06% urea and 0.3% lime can control the P. palmivora fungus inside the soil. Key words: Pod rot, P. palmivora, urea, lime, ammonia

Page 1 of 1 | Total Record : 5