cover
Contact Name
ratri yuli lestari
Contact Email
ratri.y.lestari@gmail.com
Phone
-
Journal Mail Official
jrihh.banjarbaru@gmail.com
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Riset Industri Hasil Hutan
ISSN : 20861400     EISSN : 25030779     DOI : -
Jurnal Riset Industri Hasil Hutan (JRIHH) adalah jurnal yang diterbitkan oleh Balai Riset dan Standardisasi Industri Banjarbaru. JRIHH terbit 2 (dua) kali setiap tahun pada bulan Juni dan Desember dengan E-ISSN: 2503-0779 dan P-ISSN : 2086-1400. JRIHH fokus pada isu-isu sektor industri yang berhubungan dengan: 1. Pengembangan Teknologi Pengolahan Kayu dari Hasil Hutan Alam, Hutan Tanaman Industri, dan Hasil Hutan Perkebunan. 2. Pengembangan Teknologi Pengolahan/ Pemanfaatan Limbah Industri Hasil Hutan Kayu (limbah padat dan cair). 3. Pengembangan Teknologi Pengolahan Hasil Hutan lainnya (Rotan, Bambu, dan Hasil Hutan sampingan termasuk pemanfaatan hasil limbahnya).
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 10, No 2 (2018)" : 5 Documents clear
Karakteristik Sifat Fisik dan Kimia Edible Film Pati Sagu Rumbia (Metroxylon sagu Rottb) untuk Bahan Baku Cangkang Kapsul (Characteristics of Physical and Chemical Properties of Edible Film of Rumbia Sago Starch for Capsule Shell Material) Hamlan Ihsan; Nadra Khairiah; Rufida Rufida
Jurnal Riset Industri Hasil Hutan Vol 10, No 2 (2018)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (390.638 KB) | DOI: 10.24111/jrihh.v10i2.3972

Abstract

The purpose of this research was to analyze the physical and chemical properties of sago starch edible film (Metroxylon sagu Rottb) as capsule shells material. The research was started with the extraction of the rumbia starch, and was followed with the production of edible film added with modified carrageenan concentrations (20% and 30% w/w) to the main compound. Organoleptic test showed that the color and odor of the films were normal. Water content of wet sago and dry sago was 12.55%, and 5.38%, respectively. Although the addition of carrageenan increased the water content but still corresponded with SNI gelatin quality standard with a maximum of water content of 16%. The ash content of fresh sago and dry sago was 0.36% and 1.09%, respectively, and the content increased significantly with the addition of carrageenan. The pH of all varied samples was 5.5 – 7.0, and the pH was in accordance with SNI. Meanwhile, the heavy metal content of the samples measured by means of AAS was negative. Based on viscosity testing withBrookfield method, high carrageenan concentration led to low viscosit. tensile strength test based on ASTM D 882-2002 gave positive results for dry sago (21.05 kg/cm2) whereas fresh sago with modified 20% and 30% carrageenan had tensile strength of 5.33 kg/cm2 and 18.18 kg/cm2, respectively. The results showed that sago starch had the potential as a raw material for producing soft capsules by modified composition to enhance physical and mechanical properties in order to meet the quality standard of edible film.
Effects of Biomass Moisture Content and Process Temperature on Biopellet Quality Derived from Rubber Seed Shell and Ater Bamboo (Gigantochloa atter) I Dewa Gede Putra Prabawa
Jurnal Riset Industri Hasil Hutan Vol 10, No 2 (2018)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (452.439 KB) | DOI: 10.24111/jrihh.v10i2.3975

Abstract

The purposes of this research were to study the ieffects of biomass moisture content and process temperature on the quality of biopellet derived from rubber seed shell and bamboo ater (Gigantochloa atter). The biomass was conditioned at different moisture contents (6, 12, 14, 16, 18, and 20% w/w), and the biopelet was produced at a pressure of 597,24 kg/cm2 with various process temperatures (100, 125, 150, 175, and 200oC). The results showed that the properties of produced biopellets were significantly affected by the variation of moisture content and process temperature. High moisture content of biomass could increase the moisture content of biopellet while the calorific value and ash content decreased. With the increase in process temperatures, calorific value and ash increased whereas the moisture content of biopellet decreased. Mechanical durability was enhanced with the increase inthe moisture content of biomass, starting from 6% to 18%;and was improved with the increase in the process temperatures, starting from 100oC to 175oC. However, the bulk density of biopellet increased with the increase inthe moisture content of biomass, starting from 6% to 16%, and was improved with the increase in the process temperatures from 100oC to 150oC. The best quality of biopellet was produced  in the biomass moisture content of 16% and the process temperature of 150oC. That biopellet had mechanical durability of 99.16%, calorific value of 4,402 cal/g, bulk density of 1,157 kg/m3, moisture content of 6.71%, ash of 1.19%, nitrogen of 0.15%, Sulphur of 0.013%, and chlorine of <0.1 ppm. That biopellet quality met European standards (EN 14961-2).
Formulation of Baby Porridge Flour Using Nagara Tuber and Kalakai (Stenochlaena palustris) as Iron Fortifying Agent with Natural Flavor of Ambon Banana Sholihah, Nitie Ma'rifatus; Nugroho, Ph.D., Agung; Agustina, Lya
Jurnal Riset Industri Hasil Hutan Vol 10, No 2 (2018)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (555.37 KB) | DOI: 10.24111/jrihh.v10i2.4080

Abstract

Kalakai (Stenochlaena palustris) is a fern that lives wildly in nature. High iron content in the diet underlies the use of kalakai plants as a natural iron fortifying food for growing children. The purpose of this study was to determine the best formulation of baby porridge flour meeting the Indonesian National Standard (SNI). Kalakai was selected as a Fe fortifying material due to its high content of Fe. Three formulations (A, B, and C) were produced from three different flours (cassava nagara, kalakai, and young banana), and the formulated samples were tested. Formula A was 55 (cassava) : 5 (kalakai) : 40 (banana); formula B was 57:3:40; and formula C was 59:1:40. Those three formulations were compared with a control which was made from cassava nagara flour and banana flour with ratio of 60% and 40% (without kalakai). The results showed that the best formula was the A formulation, with a ratio content of 55:5:40. This formula had 0.90 g/ml of kamba density, 2.04 of water absorption index, 6.62% of moisture content, 3.02% of ash content, 0.67% of fat content, 2.41% of crude protein, and 4.48 mg/100g of Fe level.
Keeratan Hubungan antara Dimensi Sarang Bambu dan Perkembangbiakan Lebah Trigona sp. (Correlation of Bamboo Nest Dimension and Trigona sp. Bee Productivity) Kapitanhitu, Rusli; Cahyono, Tekat Dwi; Kaliky, Fitriyanti
Jurnal Riset Industri Hasil Hutan Vol 10, No 2 (2018)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (859.728 KB) | DOI: 10.24111/jrihh.v10i2.4231

Abstract

The Trigona sp. bees do not require specific breeding treatment. Nevertheless, selection of shade, container or media to cultivate this stingless bee can be engineered to increase the production of honey. This study was aimed to determine the effect of diameter, length, and thickness of bamboo used as a beehive of Trigona sp. The beehive was prepared from 54 thorny bamboo’s culms with various sizes. Hole was made on the culms where the queen and propolis could be inserted into the culms. Those inserted culms were then put in the cultivation place. The honey resulted from each culm was calculated after 4 months of the cultivation. The results showed that total honey production, HPB (honey, propolis, bee bread), and bee bread were 221.3 g, 792.7 g, and 33.8 g. Regression analysis revealed that there wa a significant effect of bamboo’s diameter on honey production, but not on bee bread, egg’s weight and HPB. Recommended diameter of bamboo culms for the cultivation of Trigona sp. was about 6-12 cm to obtain better quantity of honey
Praperlakuan secara Hidrotermal Limbah Lignoselulosa untuk Produksi Bioetanol Generasi Kedua (Pretreatment of Lignocellulose Wastes Using Hydrothermal Method for Producing Second Generation Bioethanol) Al-Arofatus Naini; Nurwahdah Nurwahdah; Ratri Yuli Lestari; Sunardi Sunardi, Ph.D.
Jurnal Riset Industri Hasil Hutan Vol 10, No 2 (2018)
Publisher : Kementerian Perindustrian

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1202.403 KB) | DOI: 10.24111/jrihh.v10i2.4078

Abstract

The second generation of bioethanol derived from various cellulosic biomass materials is one of the latest renewable energy as the alternative of fossil fuel. The cellulosic waste based wood and non-wood materials are the most abundant natural resource on the earth, renewable, and inexpensive. Currently, second generation bioethanol development is still not optimally done due to various obstacles, especially the pretreatment process to eliminate lignin, influencing the conversion process of cellulose into reducing sugar. Hydrothermal method is one of lignocellulose pretreatments, which is widely developed because this method is relatively cheap and environmentally friendly with the utilization of water-based solvent. Hydrothermal methods performed at high temperature and pressure in a relatively short time are able to deconstruct the lignocellulose structure that enables cellulase enzymes to access cellulose for hydrolysis. This study discussed about the development of hydrothermal method for lignocellulose pretreatment process to increase production of second-generation bioethanol. Some aspects studied in this research were structural change, chemical composition, lignocellulosic crystallinity before and after hydrothermal processes, and hydrothermal effect on the production of reducing sugars. Hydrothermal method could be used and developed as an efficient and cheap method as the first treatment of lignocellulose waste in attempt to increase the production of bioethanol.

Page 1 of 1 | Total Record : 5