cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Bulletin of Electrical Engineering and Informatics ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication, computer engineering, computer science, information technology and informatics from the global world. The journal publishes original papers in the field of electrical (power), electronics, instrumentation & control, telecommunication and computer engineering; computer science; information technology and informatics. Authors must strictly follow the guide for authors. Please read these instructions carefully and follow them strictly. In this way you will help ensure that the review and publication of your paper is as efficient and quick as possible. The editors reserve the right to reject manuscripts that are not in accordance with these instructions.
Arjuna Subject : -
Articles 539 Documents
On the use of voice activity detection in speech emotion recognition Muhammad Fahreza Alghifari; Teddy Surya Gunawan; Mimi Aminah binti Wan Nordin; Syed Asif Ahmad Qadri; Mira Kartiwi; Zuriati Janin
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (903.469 KB) | DOI: 10.11591/eei.v8i4.1646

Abstract

Emotion recognition through speech has many potential applications, however the challenge comes from achieving a high emotion recognition while using limited resources or interference such as noise. In this paper we have explored the possibility of improving speech emotion recognition by utilizing the voice activity detection (VAD) concept. The emotional voice data from the Berlin Emotion Database (EMO-DB) and a custom-made database LQ Audio Dataset are firstly preprocessed by VAD before feature extraction. The features are then passed to the deep neural network for classification. In this paper, we have chosen MFCC to be the sole determinant feature. From the results obtained using VAD and without, we have found that the VAD improved the recognition rate of 5 emotions (happy, angry, sad, fear, and neutral) by 3.7% when recognizing clean signals, while the effect of using VAD when training a network with both clean and noisy signals improved our previous results by 50%.
Geometric sensitivity of beacon placement using airborne mobile anchors Izanoordina Ahmad
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (615.4 KB) | DOI: 10.11591/eei.v8i4.1589

Abstract

Locating fixed sensing devices with a mobile anchor is attractive for covering larger deployment areas. However, the performance sensitivity to the geometric arrangement of anchor beacon positions remains unexplored. Therefore, localization using new RSSI-based localization algorithm, which uses a volumetric probability distribution function is proposed to find the most likely position of a node by information fusion from several mobile beacon radio packets to reduce error over deterministic approaches. This paper presents the guidelines of beacon selection that leads to design the most suitable trajectory, as a trade-off between the energy costs of travelling and transmitting the beacons versus the localization accuracy.
Performance of europium aluminium doped polymer optical waveguide amplifier Nur Najahatul Huda Saris; Azura Hamzah; Sumiaty Ambran; Osamu Mikami; Takaki Ishigure
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (808.925 KB) | DOI: 10.11591/eei.v8i4.1598

Abstract

In this paper, the graded index (GI) multimode rare-earth metal (RE-M) doped polymer optical waveguide amplifier has been prepared and tested optically. A 10-cm Europium Aluminum Benzyl Methacrylate ( was fabricated via a unique technique known as the “Mosquito Method” which utilizes a micro-dispenser machine. Optical gain from 75 to 150 µm circular core diameter waveguide of 13 wt.% concentration has been demonstrated and measured under forward pumping condition. The cladding monomer deployed in this research is Acrylate resin XCL01, which is a modified photocurable acrylate material. Fundamentally, -30 decibel (dBm) red light signal input and 23 dBm pump power of 532 nm green laser wavelength is implemented within the range of 580 to 640 nm optical amplification wavelength. A maximum gain of 12.96 dB at 617 nm wavelength has been obtained for a 100 µm core diameter of Eu-Al polymer optical waveguide. The effect of different coupler diameter for pumping and the comparison of insertion loss before and after amplification against the performance of the Eu-Al polymer waveguide amplifier are also studied. There exists an optimum core diameter of which the amplifier gain enhancement is at maximum value.
Graphene slurry based passive Q-switcher in erbium doped fiber laser Siti Nur Fatin Zuikafly; Nor Farhah Razak; Rizuan Mohd Rosnan; Sulaiman Wadi Harun; Fauzan Ahmad
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (582.417 KB) | DOI: 10.11591/eei.v8i4.1609

Abstract

In this work, a Graphene slurry based passive Q-switcher fabricated from Graphene-Polylactic acid (PLA) filament which is used for 3D printing. To produce the Graphene slurry, the diameter of the filament was reduced and Tetrahydrofuran (THF) was used to dissolve the PLA. The Graphene-THF suspension was drop cast to the end of a fiber ferrule and the THF then evaporated to develop Graphene slurry based SA which is integrated in fiber laser cavity. At threshold input pump power of 30.45 mW, a Q-switched Erbium-doped fiber laser (EDFL) can be observed with the wavelength centered at 1531.01 nm and this remained stable up to a pump power of 179.5 mW. As the pump power was increased gradually, an increase in the repetition rates was recorded from 42 kHz to 125 kHz, while the pulse width was reduced to 2.58 μs from 6.74 μs. The Q-switched laser yielded a maximum pulse energy and peak power of 11.68 nJ and 4.16 mW, respectively. The proposed Graphene slurry based saturable absorber also produced a signal-to-noise ratio of 44 dB indicating a stable Q-switched pulsed laser.
Observation of dark and bright pulses in q-switched erbium doped fiber laser using graphene nano-platelets as saturable absorber Nur Hidayah Muhamad Apandi; Siti Nur Fatin Zuikafly; Nabilah Kasim; Mohd Ambri Mohamed; Sulaiman Wadi Harun; Fauzan Ahmad
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1061.974 KB) | DOI: 10.11591/eei.v8i4.1610

Abstract

In this paper, a passively Q-switched Erbium doped fiber laser (EDFL) by residing Graphene nanoplatelets (GnPs) embedded in polyvinyl alcohol (PVA) based saturable absorber (SA) is demonstrated. To aid the dispersion of GNPs, a surfactant is used and then it is mixed with polyvinyl alcohol (PVA) as host polymer to develop GnPs-PVA film based passive SA. The GnPs-PVA based film then integrated in laser cavity in ring cavity configuration for pulse laser generation. The experimental works show that the proposed passive SA operates at input pump power range from 77 mW to 128 mW with a tunable repetition rate from 78.4 kHz to 114.8 kHz and a shortest pulse width of 3.69 µs. The laser produces maximum instantaneous output peak power and pulse energy of 7.3 mW and 30.46 nJ, respectively and accompanied by signal to noise ratio (SNR) of 64 dB.
Community reporting system: road violation M. R. Roslan; Suriza Ahmad Zabidi
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.767 KB) | DOI: 10.11591/eei.v8i3.1509

Abstract

In the era of internet and wireless, an online community reporting system that is easy to use and hustle free is much needed to allow the user to place a misconduct report to the relevant authority. The available system is inefficient and time-consuming since mostly are using web-based which makes the user unwilling to make a report to the authority. The objective of this project is to design a system using android application that is cost-effective and easy to use. The scope of this project is on the road violation reporting system. The outcome of the system will provide a user with an easy reporting system and also the authority can manage the report easily. The development of the system is expected to enhance the reporting system and betterment for the community as well as the authority as a whole.
Evaluating IoT based passive water catchment monitoring system data acquisition and analysis Muhammad Aznil Ab Aziz; M. F. Abas; Mohamad Khairul Anwar Abu Bashri; N. Md. Saad; M. H. Ariff
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (815.5 KB) | DOI: 10.11591/eei.v8i4.1583

Abstract

Water quality is the main aspect to determine the quality of aquatic systems. Poor water quality will pose a health risk for people and ecosystems. The old methods such as collecting samples of water manually and testing and analysing at lab will cause the time consuming, wastage of man power and not economical. A system is needed to provide a real-time data for environmental protection and tracking pollution sources. This paper aims to describe on how to monitor water quality continuously through IoT platform. Water Quality Catchment Monitoring System was introduced to check and monitor water quality continuously. It’s features five sensors which are temperature sensor, light intensity sensor, pH sensor, GPS tracker and Inertia Movement Unit (IMU). IMU is a new feature in the system where the direction of x and y is determined for planning and find out where a water quality problem exists by determining the flow of water. The system uses an internet wireless connection using the ESP8266 Wi-Fi Shield Module as a connection between Arduino Mega2560 and laptop. ThingSpeak application acts as an IoT platform used for real-time data monitoring.
Obfuscated computer virus detection using machine learning algorithm Tan Hui Xin; Ismahani Ismail; Ban Mohammed Khammas
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1015.921 KB) | DOI: 10.11591/eei.v8i4.1584

Abstract

Nowadays, computer virus attacks are getting very advanced. New obfuscated computer virus created by computer virus writers will generate a new shape of computer virus automatically for every single iteration and download. This constantly evolving computer virus has caused significant threat to information security of computer users, organizations and even government. However, signature based detection technique which is used by the conventional anti-computer virus software in the market fails to identify it as signatures are unavailable. This research proposed an alternative approach to the traditional signature based detection method and investigated the use of machine learning technique for obfuscated computer virus detection. In this work, text strings are used and have been extracted from virus program codes as the features to generate a suitable classifier model that can correctly classify obfuscated virus files. Text string feature is used as it is informative and potentially only use small amount of memory space. Results show that unknown files can be correctly classified with 99.5% accuracy using SMO classifier model. Thus, it is believed that current computer virus defense can be strengthening through machine learning approach.
Performance comparison of SVM and ANN for aerobic granular sludge Nur Sakinah Ahmad Yasmin; Norhaliza Abdul Wahab; Aznah Nor Anuar; Mustafa Bob
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (775.903 KB) | DOI: 10.11591/eei.v8i4.1605

Abstract

To comply with growing demand for high effluent quality of Domestic Wastewater Treatment Plant (WWTP), a simple and reliable prediction model is thus needed. The wastewater treatment technology considered in this paper is an Aerobic Granular Sludge (AGS). The AGS systems are fundamentally complex due to uncertainty and non-linearity of the system makes it hard to predict. This paper presents model predictions and optimization as a tool in predicting the performance of the AGS. The input-output data used in model prediction are (COD, TN, TP, AN, and MLSS). After feature analysis, the prediction of the models using Support Vector Machine (SVM) and Feed-Forward Neural Network (FFNN) are developed and compared. The simulation of the model uses the experimental data obtained from Sequencing Batch Reactor under hot temperature of 50˚C. The simulation results indicated that the SVM is preferable to FFNN and it can provide a useful tool in predicting the effluent quality of WWTP.
Advancement of a smart fibrous capillary irrigation management system with an Internet of Things integration Muhammad Khairie Idham Abd Rahman; Mohamad Shukri Zainal Abidin; Mohd Saiful Azimi Mahmud; Salinda Buyamin; Mohamad Hafis Izran Ishak; Abioye Abiodun Emmanuel
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (989.364 KB) | DOI: 10.11591/eei.v8i4.1606

Abstract

This paper presents the development work for integrating an Internet of Things (IoT) with a fibrous capillary irrigation system based on the climatic demand estimated by the weather condition. The monitoring and control using an IoT system is critical for such application that is targeted for precision irrigation. The fibrous capillary irrigation system is managed by manipulating a water supply depth using the potential evapotranspiration (ETo). A soil mositure sensor was used to monitor the progress of the root water uptake and input the fuzzy logic system, to determine the water requirements for the crop medium. Experiment was conducted by using a Choy sum plant as the test crop grown in a greenhouse. The monitoring of the demand and management of the watering system was successful. The ETo data was able to approximate the crop water requirement in near real time.