cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurnal@if.uinsgd.ac.id
Editorial Address
Gedung Fakultas Sains dan Teknologi Lt. 4 Jurusan Teknik Informatika Jl. A.H. Nasution No. 105 Cibiru Bandung 40614 Telp. (022) 7800525 / Fax (022) 7803936 Email : jurnal@if.uinsgd.ac.id
Location
Kota bandung,
Jawa barat
INDONESIA
JOIN (Jurnal Online Informatika)
ISSN : 25281682     EISSN : 25279165     DOI : 10.15575/join
Core Subject : Science,
JOIN (Jurnal Online Informatika) is a scientific journal published by the Department of Informatics UIN Sunan Gunung Djati Bandung. This journal contains scientific papers from Academics, Researchers, and Practitioners about research on informatics. JOIN (Jurnal Online Informatika) is published twice a year in June and December. The paper is an original script and has a research base on Informatics.
Arjuna Subject : -
Articles 30 Documents
Search results for , issue "Vol 5 No 1 (2020)" : 30 Documents clear
Analyzing and Forecasting Admission data using Time Series Model Nu'man Normas Muhamad; Husni Thamrin
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.546

Abstract

Problems that will be faced by higher education institutions, especially in the phase of new student admissions. Careful planning and strategies are needed in dealing with the process of admission of new students. The data for planning can be obtained using the forecasting method. The time series forecasting model is used to get forecasting data. Forecasting data is used for the decision making process. The data of new student admissions obtained is 3-period data (2017 - 2019). The data obtained is stationary. Because the data is stationary, the data does not need differentiation. The data obtained also has a sufficient correlation value, and has a loop on the 7th lag. Before making an application, a test is performed to find a time series model that is suitable for admission data. The tested models are the ARIMA model and the Autoregression model. In testing the forecast timespan, the ARIMA model gets a smaller error value in almost all tests. In the Cross-validation method, the ARIMA Model also gets a smaller RMSECV or MAECV value than the AR model. The ARIMA model was chosen to be implemented into the application. The auto_arima algorithm is used so that applications can adapt to different data. The ARIMA model is implemented into a prediction application using the Python programming language. Application development uses Django as a web-based web application framework. Bootstrap is used to create application interfaces. the result from forecasted data is acceptable for short period.
Prediction of Indonesian Inflation Rate Using Regression Model Based on Genetic Algorithms Faisal Dharma; Shabrina Shabrina; Astrid Noviana; Muhammad Tahir; Nirwana Hendrastuty; Wahyono Wahyono
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.532

Abstract

Inflation occurs where there is an increase in the price of goods or services in general and continuously in a country. Uncontrolled inflation will have an impact on the decline of the Indonesian economy. Therefore, the prediction of future inflation levels is necessary for the government to develop economic policies in the future. Prediction of inflation levels can be done by studying historical past Consumer Price Index (CPI) data. Regression methods are often used to solve prediction problems. The problem of finding the optimal prediction model can be seen as an optimization problem. Genetic algorithms are often used to deal with optimization problems. Thus, this work proposed to use a genetic algorithm-based regression model for predicting inflation levels. The model was trained and evaluated using real CPI data which obtained from the Indonesian Central Bank. Based on the experiment, it is proved that the proposed model is effective in predicting the inflation level as it gains MSE of 0.1099.
Optimization of Sentiment Analysis for Indonesian Presidential Election using Naïve Bayes and Particle Swarm Optimization Nur Hayatin; Gita Indah Marthasari; Lia Nuarini
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.558

Abstract

Twitter can be used to analyze sentiment to get public opinion about public figures to find a trend in positive or negative responses, especially to analyze sentiments related to presidential candidates in the 2019 election in Indonesia. Naïve Bayes (NB) can be used to classify tweet feed into polarity class negative or positive, but it still has low accuracy. Therefore, this study optimizes the Naïve Bayes algorithm with Particle Swarm Optimization (NB-PSO) to classify opinions from twitter feeds to get a good accuracy of public figures sentiment analysis. PSO used to select features to find optimization values to improve the accuracy of Naïve Bayes. There are four steps to optimize NB using PSO, i.e., initializing the population (swarm), calculate the accuracy value that matched with selected features, selected the best accuracy of classification, and updating position and velocity. From this study, the group of tweets was obtained based on the positive and negative sentiments from the community towards two Indonesia presidential candidates in 2019. The NB-PSO test shows the accuracy result of 90.74%. The result of accuracy increases by 4.12% of the NB algorithm. In conclusion, the inclusion of the Particle Swarm Optimization algorithm for Naïve Bayes classification algorithm gives a significant accuracy, especially for sentiment analysis cases.
Failover Cluster Nodes and ISCSI Storage Area Network on Virtualization Windows Server 2016 Mohammad Thoip Abdullah; Sulhan Qidri; Wadi Nuryadi; Septian Rheno Widianto
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.564

Abstract

The use of data in this current digital era, the traditional model of connecting the storage media with servers, cannot meet the need for fast access to a very large amount of data. Storage Area Network can be the solution because this technology can handle a large amount of storage media (TeraByte), enable to be a share of storage resources, as well as giving data access in real-time, quick, and easy. Internet Small Computer System Interface (iSCSI) is a concept of storage media that use Internet Protocol as a medium for connecting storage media and data transfer through network service. Testing of availability server in this research use failover cluster technology, after testing done, then the result is obtained, when a failure or error occurs on the primary server, the primary server role will be automatically replaced by backup server with the same resource as the main server. As for the time automatic displacement server, when an active server makes failure, then it will only take less than 5 seconds. So, it can be concluded that this technology can minimize the value of the downtime in the system.
Possible System Architecture for Travel Recommender Supriyanto Supriyanto; Jefree Fahana
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.573

Abstract

Travel recommender systems have been developed to meet the needs of users in the field of tourism. This system has several versions depending on the characteristics of the country, users and filtering techniques used. The development of recommendation filtering system techniques is very rapid so that the recommendation system has high enough complexity, but it also must have high usability. This paper discusses how the travel recommender system architecture is built by examining data structures, processing procedures and interaction design. The goal is to obtain the best usability in implementing a travel recommendation system. The system is built using the example case of finding the right tourist spot in Yogyakarta, Indonesia. This system applies several filtering techniques such as knowledge-based filtering, content-based filtering, and collaborative filtering. The evaluation results show that the system architecture optimized gets a usability level acceptable.
Two-stage Gene Selection and Classification for a High-Dimensional Microarray Data Masithoh Yessi Rochayani; Umu Sa'adah; Ani Budi Astuti
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.569

Abstract

Microarray technology has provided benefits for cancer diagnosis and classification. However, classifying cancer using microarray data is confronted with difficulty since the dataset has high dimensions. One strategy for dealing with the dimensionality problem is to make a feature selection before modeling. Lasso is a common regularization method to reduce the number of features or predictors. However, Lasso remains too many features at the optimum regularization parameter. Therefore, feature selection can be continued to the second stage. We proposed Classification and Regression Tree (CART) for feature selection on the second stage which can also produce a classification model. We used a dataset which comparing gene expression in breast tumor tissues and other tumor tissues. This dataset has 10,936 predictor variables and 1,545 observations. The results of this study were the proposed method able to produce a few numbers of selected genes but gave high accuracy. The model also acquired in line with the Oncogenomics Theory by the obtained of GATA3 to split the root node of the decision tree model. GATA3 has become an important marker for breast tumors.
Rupiah Exchange Prediction of US Dollar Using Linear, Polynomial, and Radial Basis Function Kernel in Support Vector Regression Mufni Alida; Metty Mustikasari
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.537

Abstract

As a developing country, Indonesia is affected by fluctuations in foreign exchange rates, especially the US Dollar. Determination of foreign exchange rates must be profitable so a country can run its economy well. The prediction of the exchange rate is done to find out the large exchange rates that occur in the future and the government can take the right policy. Prediction is done by one of the Machine Learning methods, namely the Support Vector Regression (SVR) algorithm. The prediction model is made using three kernels in SVR. Each kernel has the best model and, the accuracy and error values are compared. The Linear Kernel has C = 7, max_iter = 100. The Polynomial Kernel has gamma = 1, degree = 1, max_iter = 4000 and C = 700. The RBF kernel has gamma = 0.03, epsilon = 0.007, max_iter = 2000 and C = 100. Linear kernels have advantages in terms of processing time compared to Polynomial and Radial Basis Function (RBF) kernels with an average processing time of 0.18 seconds. Besides that, in terms of accuracy and error, the RBF kernel has advantages over the Linear and Polynomial kernels with the value R2 = 95.94% and RMSE = 1.25%.
Virtual Reality Headset Implementation on Parsec Cloud Gaming Platform Muhammad Fadhil Rahadiansyah; Ridha Muldina; Sussi Sussi
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.578

Abstract

Virtual reality (VR) based games are a type of game that provides immersive gaming experience, allowing players to dive into the virtual world of the game being played. VR-based games require a high minimum computer specification, so thin clients cannot play VR-based games properly. This research aims to see how to enable thin computers to play VR-based games by utilizing cloud gaming technology. Using a high specification computer as a server, an android device as a VR headset, this Final Project implements a VR headset device so that it can be used in conjunction with cloud gaming services to be able to play VR-based games on thin computers and see how well the implementation by seeing the result from computer resources used and the Quality of Services. With Parsec cloud gaming services, the application carried out in this Final Project can run well on computers with low specifications. CPU usage on the client computer when the service is running is high at 91% usage, with 2818 MB RAM usage. Quality of Service is obtained when setting the highest quality preset, with a throughput of 16MB with a delay of about 2 ms. VR games that are played can run well with a minimum bandwidth of 15 Mbps selected from the Frame per Second (FPS) results obtained to reach 56 FPS with medium quality settings.
Exploiting Web Scraping for Education News Analysis Using Depth-First Search Algorithm Endah Ratna Arumi; Pristi Sukmasetya
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.548

Abstract

Online news is one source of data that is always up to date and provides information or factual data. The search engine is one of the features for users to be able to enter keywords based on the expected category quickly. The development of education in Indonesia makes it essential to discuss, in this study using unstructured data in online news with the keyword Education included as a parameter, and adding search methods in the field of Artificial Intelligence so that the data becomes more accurate. Data that used here was from online news, namely CNN Indonesia, Detikcom, and Liputan6. Using Python Programming with depth-first search method (DFS), when compared with the results data for relevant news. Web erosion using DFS will be very helpful in searching because this method can check the date data was sent and then track the destination URL. Of the three online media sites, Detikcom produces the highest monthly data yielding an average of 885 news about education. At the same time, Liputan6 has the least amount of data on average, 28 news per month, but the data obtained are very relevant compared to Detikcom and CNN Indonesia.
Analysis and Implementation Machine Learning for YouTube Data Classification by Comparing the Performance of Classification Algorithms Riyan Amanda; Edi Surya Negara
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.505

Abstract

Every day, people around the world upload 1.2 million videos to YouTube or more than 100 hours per minute, and this number is increasing. The condition of this continuous data will be useless if not utilized again. To dig up information on large-scale data, a technique called data mining can be a solution. One of the techniques in data mining is classification. For most YouTube users, when searching for video titles do not match the desired video category. Therefore, this research was conducted to classify YouTube data based on its search text. This article focuses on comparing three algorithms for the classification of YouTube data into the Kesenian and Sains category. Data collection in this study uses scraping techniques taken from the YouTube website in the form of links, titles, descriptions, and searches. The method used in this research is an experimental method by conducting data collection, data processing, proposed models, testing, and evaluating models. The models applied are Random Forest, SVM, Naive Bayes. The results showed that the accuracy rate of the random forest model was better by 0.004%, with the label encoder not being applied to the target class, and the label encoder had no effect on the accuracy of the classification models. The most appropriate model for YouTube data classification from data taken in this study is Naïve Bayes, with an accuracy rate of 88% and an average precision of 90%.

Page 1 of 3 | Total Record : 30