Claim Missing Document
Check
Articles

Found 9 Documents
Search

Expert System Technology in Implementation of K-Means Clustering Algorithm in Patients with Tuberculosis at Cut Meutia Hospitals North Aceh Eva Darnila; Mutammimul Ula; Mauliza; Iwan Pahendra; Ermatita; Hardi, Richki
Mulia International Journal in Science and Technical Vol 2 No 1 (2019): August
Publisher : Universitas Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Technology in detecting potential drop out tuberculosis (TB) in Cut Meutia hospital and Health Office plays a great role and has been very important. This is seen from the increasing number of patients who could not be cured succesfully and who do not care about TB which will have fatal consequences on their health. In addition, the main cause of the increase in the number of potential drop out TB patients is because of the lack of awareness of the community, especially the middle economic level family of the danger of TB disease as seen from the irregular treatment that they have and the continued smoking habit. In this study, an expert system was used to diagnose patients with potential Drop Out tuberculosis who were then diagnosed into the cluster of each TB patient using the K-Means algorithm. The system implementation in the expert system is that the initial symptoms include the question of whether the patient has cough with phlegm for 2-3 weeks or more (yes), has the patient been treated with TB drugs less than 1 month (no), experienced no appetite and nausea. From the results of these symptoms, there are diagnoses of New Patients, Pulmonary BTA (-) / Ro (+), with sub-acute level having moderate severity and duration, the severity can reduce the health status of the patient, the patient is eventually expected to recover and totally recovered the disease does not develop into a chronic disease. The results of this expert system would be entered into the K-Means clustering. The test results of the k-means clustering algorithm with K = 3 (C1, C2, C3). with initial centroid values of m1: C1, 5, 5, 5, 5, 5, 5 and m_2: C2, 3, 3, 3, 3, 3, with patient p1 with the value of each cluster (C1) = 6.928, ( C2) = 2.828, C3 = (4). For the closest cluster value is C2, then the BCV (Between Cluster Variation) calculation value is 19,596, and the WCV (Within cluster Variation) value is 144. Then the ratio value is 0.136. The result of the iteration -3 can be stopped because it does not experience the movement of the clusters and the clusters have been optimal. The results of this system can classify patients for each village and sub-district area so that the Hospital officials and the Health Office can directly monitor potential drop out TB patients and can facilitate the Head of Office/region in handling clustered TB patients using K-Means. Furthermore, in the coming years, it can be used as a tool in taking preventive measures.
Aplikasi Diagnosa Penyakit Tanaman Palawija dengan Forward Chaining dan Dempster Shafer Berbasis Android Mukti Qamal; Eva Darnila; Balqis Melodi
TECHSI - Jurnal Teknik Informatika Vol 13, No 1 (2021)
Publisher : Teknik Informatika Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/techsi.v13i1.2826

Abstract

Kecerdasan buatan adalah salah satu bagian dari teknologi yang membuat komputer dapat berpikir dan bertindak seperti manusia. Salah satu bagian dari kecerdasan buatan adalah sistem pakar. Pembangunan sistem pakar dapat digunakan untuk mendiagnosa penyakit pada tanaman palawija layaknya seorang pakar sehingga dapat membantu petani untuk dapat mengetahui penyakit yang diderita oleh tanamannya dengan cepat. Sistem ini dibuat dengan menggunakan UML (Unified Modelling Language) dengan mengimplementasikan mesin inferensi Forward Chaining dan Dempster Shafer yang dapat mengidentifikasi masalah dengan perhitungan yang cukup akurat dengan nilai rata-rata mencapai 72,5%. Sistem pakar ini berbasis android sehingga dalam penggunaannya lebih efisien yang dapat digunakan kapanpun dan dimanapun.
Inovasi Pengolahan, Managemen, Produksi Ikan Bandeng Presto Dalam Peningkatan Pemberdayaan Ekonomi Masyarakat Gampong Cot Girek Kandang Kota Lhokseumawe Maryana Maryana; Eva Darnila; Fatimah Fatimah; Zuraida Zuraida
Jurnal Teknologi Terapan and Sains 4.0 Vol 2, No 3 (2021): Jurnal Teknologi Terapan & Sains
Publisher : Jurnal Teknologi Terapan and Sains 4.0

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.1976/tts 4.0.v2i3.5780

Abstract

Inovasi pengolahan, managemen, produksi ikan bandeng presto sangatlah penting bagi warga gampong cot girek kandang, hal ini sangat mendukung untuk peningkatan pertumbuhan ekonomi keluarganya. Tujuan dari pengabdian adalah Untuk melatih ibu-ibu Kelompok wanita tani/ ibu rumah tangga Gampong  Cot Girek  Kandang Kecamatan Muara Dua Kota Lhokseumawe tentang pengolahan produksi Ikan Bandeng Presto berbasis Inovasi, memberikan pengetahuan tentang manajemen usaha yang baik dan benar, serta memberikan pelatihan cara pemasaran produksi menggunakan media online. Metode pelaksanaan  inovasi pengolahan ikan bandeng presto meliputi : (1) Tahapan Perencanaan Pelatihan Olahan Produk Ikan Bandeng; (2) Persiapan Tempat Pelatihan; (3) memberikan penyuluhan/penyampaian materi tentang pengolahan produk ikan bandeng dengan berbagai jenis varian inovasi yang digunakan pada ikan bandeng; (4) Perbaikan tata kelola usaha, baik produksi maupun Penerapan teknologi Vakumn Sealer; (5) pemasaran meliputi media sosial, penggunaan aplikasi android untuk group penjualan dan penjelasan manajemen kelompok untuk aspek produksi dan pemasaran. Luaran yang dihasilkan adalah (1) Adanya inovasi ikan bandeng presto dalam menciptakan peluang usaha warga gampong cot girek kota lhokseumawe; 2. Adanya manajemen (tata kelola)  dalam pengolahan ikan bandeng presto yang mempunyai standar kebersihan dan kualitas yang baik. (3) adanya tata kelola manajemen keuangan untuk warga gampong untuk memasarkan ikan bandeng presto yang sesuai dengan standarnya; (4) Dapat memberikan ilmu kepada warga gampong cot girek kandang yang dimulai dari proses pengolahan secara runtun dan terarah.
Classification of the Number of Malaria Cases in Asahan Regency Using Random Forest Application Naza Amarianda; Eva Darnila; Lidya Rosnita
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.9960

Abstract

This study aims to classify the number of malaria cases in Asahan Regency using the Random Forest method. This method was chosen because it is able to handle data with many and complex variables and reduce the risk of overfitting. Data were collected from the Asahan Regency Health Office. The research stages include data collection, preprocessing, model training, and model evaluation. The dataset used consists of 568 malaria case data from 25 sub-districts. The data is divided into 80% for training and 20% for testing. Of the total data, there are 109 data 19.2% in the low category, 334 data 58.8% in the medium category, and 125 data 22.0% in the high category. This classification aims to assist in mapping the level of malaria risk in the area. In this study, several variables were used for model training, including health centers, sub-districts, age, month, and gender. The results of the analysis showed that the most influential variables were health centers 47.53%, followed by sub-districts 43.77%, age 6.07%, months 2.18%, and gender 0.45%. The Random Forest model built was evaluated using accuracy, precision, recall, and F1-Score metrics. The evaluation results showed that the model was able to classify the number of malaria cases well, with an accuracy value of 0.97. With these results, Random Forest has proven effective as a classification method in malaria cases in Asahan Regency.
GP2Y1010AU0F Sensor as Dust Particle Measurement Device: Literature Study on its Efficiency and Application Eva Darnila; Tonny Wahyu Aji; I Made Dwi Pramana Putra
Journal of Computation Physics and Earth Science (JoCPES) Vol 4 No 1 (2024): Journal of Computation Physics and Earth Science
Publisher : Yayasan Kita Menulis - JoCPES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63581/JoCPES.v4i1.03

Abstract

Air pollution is an environmental problem that negatively impacts humans and the environment. An air quality monitoring system is required to track the effects of particulate matter (PM), one of the factors that contributes to air pollution. Accurate monitoring equipment is generally expensive and difficult to maintain, so low-cost sensors such as the GP2Y1010AU0F are used as a solution for air quality measurement. This literature review evaluates the efficiency and potential application of the GP2Y1010AU0F sensor by analyzing 20 relevant studies. Based on the review conducted, the GP2Y1010AU0F sensor shows acceptable sensitivity, moderate repeatability, and low error values when measuring air quality. It also showed a good level of correlation with similar devices. The sensor's small size, affordability, and compatibility with microcontrollers make it adaptable to system integration and development into applications and web-based monitoring. However, mass production leads to inconsistency and a reduction in the measurement accuracy of the device. It can be concluded that the GP2Y1010AU0F sensor has potential as a low-cost air quality monitoring equipment with extensive development potential despite its limitations.
Unveiling Seismic Patterns in Kalimantan: Insights into Earthquake Events Over the Last Two Decades (2000-2024) Eva Darnila; Ilham Muthahhari; R. Grata Sabdo Yudhopratidino
Journal of Computation Physics and Earth Science (JoCPES) Vol 4 No 2 (2024): Journal of Computation Physics and Earth Science
Publisher : Yayasan Kita Menulis - JoCPES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63581/JoCPES.v4i2.03

Abstract

Seismic activity in Kalimantan, once considered to be relatively minimal, has garnered increased scrutiny due to the presence of active fault lines, including the Mangkalihat, Meratus, and Tarakan faults. This research examines earthquake occurrences in Kalimantan from 2000 to 2024, utilizing seismic data from the USGS and analytical tools such as QGIS and Microsoft Excel. The findings reveal that earthquake occurrences are predominantly located in the northeastern and southeastern parts of the region, with magnitudes varying between 3.9 and 6.1. Notably, the year 2015 experienced a marked increase in seismic events. The results emphasize the critical need for disaster preparedness, the resilience of infrastructure, and the establishment of Early Warning Systems (EWS) to alleviate potential hazards. This study advocates for ongoing monitoring and enhanced public awareness to diminish seismic vulnerability in Kalimantan.  
Atmospheric Dynamics Analysis of Extreme Rain Events Using Radiosonde Observation Method (Case Study of Extreme Rain for The Period Of 21-31 March 2024 in Probolinggo (Paiton), East Java Zaky Aidhil Azzikry; Eva Darnila
Journal of Computation Physics and Earth Science (JoCPES) Vol 4 No 1 (2024): Journal of Computation Physics and Earth Science
Publisher : Yayasan Kita Menulis - JoCPES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63581/JoCPES.v4i1.04

Abstract

Rain extreme is one of phenomenon weather extreme that can cause disaster like flood and land landslide. Understanding about dynamics the atmosphere that causes the occurrence Rain extremes are very important to predict and anticipate possibility the occurrence disaster This study aims to analyze dynamics the atmosphere that causes incident Rain extreme in Probolinggo (Paiton), East Java in the period 21-31 March 2024 using method radiosonde observations. Research methods used covered rainfall data collection Rain daily, radiosonde data (temperature, humidity, wind), and real data from the numerical model global weather / climate. Data analysis was carried out using method statistics, visualization of skew-T log-P diagrams, analysis pattern wind, distribution humidity, convergence / divergence, and analysis dynamics atmosphere use equality movement and continuity. Expected results from This research is better understanding deep about dynamics the atmosphere that causes Rain extremes in the study area, such as pattern circulation wind, source water vapor, lifting processes, and mechanisms formation Rain extreme. This research can also give contribution in development system warning early and mitigation disaster related Rain extreme in the study area and other areas with similar characteristics.
Time Series Forecasting for Average Temperature with the Long Short-Term Memory Network in Deli Serdang Geophysics Station Nora Valencia Sinaga; Feriomex Hutagalung; Martha Manurung; Eva Darnila
Journal of Computation Physics and Earth Science (JoCPES) Vol 1 No 2 (2021): Journal of Computation Physics and Earth Science
Publisher : Yayasan Kita Menulis - JoCPES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53842/x2tzpb02

Abstract

An understanding of trends analysis, and prediction of time series of average temperature as one of parameter weather and climate data for climate variables. It is the central process in assessing the state of the climate of a region and provides an overall estimate about the variations in the climate variables. Explore weather trends using normal and local yearly average temperatures, compare and make observations. In this study, we try to analyze local and normal average temperature data in Deli Serdang geophysc Station based on observation station in situ. The main goal of this study to compare the normal temperature to local station and to predict the average temperature data in BMKG Geophysics Station, Deli Serdang, North Sumatra using Long Short-Term Memory Model (LSTM). Based on the result of normal data science of exploring temperature with local temperature correlation, we got the display of training curve, residual plot and the scatter plot are shown using these codes. Based on the temperature series data from Geophysic station, the MSE value is 0.83 and the R2 value is 0.86.
Optimalisasi Blue Economy Berbasis IoT dalam Pengawasan Kualitas Air Tambak untuk Sustainability UMKM di Kabupaten Aceh Utara Nunsina; Eva Darnila; Munawwar Khalil; Mustaqim; Zahratul Fitri
Jurnal Malikussaleh Mengabdi Vol. 4 No. 2 (2025): Jurnal Malikussaleh Mengabdi, Oktober 2025
Publisher : LPPM Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/jmm.v4i02.24783

Abstract

Pengabdian kepada masyarakat ini bertujuan untuk meningkatkan produktivitas dan keberlanjutan UMKM sektor perikanan di Kabupaten Aceh Utara melalui penerapan konsep Blue Economy berbasis teknologi Internet of Things (IoT) untuk pengawasan kualitas air tambak. Permasalahan utama yang dihadapi mitra adalah tidak tersedianya sarana untuk memantau kualitas air secara real-time sehingga berpotensi menurunkan hasil produksi. Kegiatan dilakukan melalui sosialisasi, pelatihan, instalasi perangkat IoT, kalibrasi sensor, serta pendampingan penggunaan sistem. Hasil pelaksanaan menunjukkan bahwa penggunaan IoT mampu memberikan data kualitas air secara akurat dan cepat, sehingga petambak dapat mengambil langkah preventif maupun korektif tepat waktu. Hal ini berdampak pada peningkatan hasil panen, efisiensi penggunaan pakan dan air, serta pengurangan risiko kerugian. Program pengabdian kepada masyarakat ini mendukung tercapainya prinsip Blue Economy dan Sustainable Development Goals (SDGs) di sektor perikanan budidaya udang vaname di Aceh Utara.