Claim Missing Document
Check
Articles

Found 11 Documents
Search

THE DIRECT-INVERSION DECONVOLUTION AND ITS APPLICATION IN SEISMIC DATA Iktri Madrinovella; Waskito Pranowo
Jurnal Geofisika Eksplorasi Vol 8, No 1 (2022)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v8i1.187

Abstract

Seismic traces are generated by the convolution of reflectivity and seismic wavelet. Due to limited frequency bandwidth, reflectivity can not be resolved easily. Deconvolution is a method to increase the frequency bandwidth and gives seismic data higher resolution, which makes it easier to analyze. Deconvolution is a common method in the seismic data processing. The mathematical definition of deconvolution is an inverse process of convolution, but the computation of deconvolution uses convolution in its process (Wiener deconvolution). We explained a method that is direct from the mathematical definition. We refer to it as direct-inversion deconvolution. The direct-inversion deconvolution process involves the matrix operation between seismic trace and wavelet instead of the deconvolution filter. By applying the direct-inversion deconvolution, the produced (or deconvolved) seismic trace shows a better result with higher resolution, regardless of the wavelet’s phase. Finally, we performed a phase rotation experiment, and the deconvolution result shows no seismic phase alteration. In comparison, we also perform spiking deconvolution in synthetic data experiments. This method is applied to The North Sea Volve Data Village seismic data, and more thin layers are significantly detected. Finally, it turns out that direct-inversion deconvolution gives a higher resolution to seismic data.
Multi-Ricker Spectral Modeling in the S-transform Domain for Enhancing Vertical Resolution of Seismic Reflection Data Sonny Winardhi; Waskito Pranowo
Indonesian Journal on Geoscience Vol 6, No 3 (2019)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5185.758 KB) | DOI: 10.17014/ijog.6.3.223-233

Abstract

DOI: 10.17014/ijog.6.3.223-233We present a relatively straightforward methodology for extending seismic bandwidth and hence enhancing the seismic resolution by performing time-variant deconvolution. We use the generalized S-transform (GST) approach in order to properly compute the time-frequency components of the seismic reflection trace. In estimating the time-variant wavelet, we propose a spectral modeling method named multi-Ricker spectral approximation (MRA). After obtaining the estimated wavelet spectrum at each time sample, a deconvolution filter can then be built and applied in the S-transform domain. This proposed time-variant seismic enhancement method needs neither information on subsurface attenuation model nor assumption that the subsurface reflectivity is random. It is a data-driven methodology which is based on the seismic data only. We validate this proposed method on a synthetic and apply to a field data. Results show that, after enhancement, overall seismic bandwidth can be extended resulting in higher vertical resolution. Correlation with VSP corridor stack at well location ensures that the generated reflection details after enhancement is geologically plausible.
Application of Velocity Variation with Angle (VVA) Method on an Anisotropic Model with Thomsen Delta Anisotropy Parameters Waskito Pranowo; Sonny Winardhi
Jurnal Geofisika Vol 16 No 2 (2018): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.788 KB) | DOI: 10.36435/jgf.v16i2.371

Abstract

Anisotropic properties will influence seismic propagation, for example it will affect wave velocity. One of well-known anisotropi equation for Transversaly Isotropic media is weak anisotropy with Thomsen's notation. Supriyono [2011] tried to estimate all of these variables by using velocity variation with angle (VVA) attribute. This research uses synthetic data, which is CMP Gather to know limitations of VVA attribute, to identify the error values, and to determine the best indicator of anisotropic eect. This research also uses another analysis method, which is grid search inversion to estimate VP0. From this research, Both VVA and grid search invesion still produce signcant error. The effects which will appear because of anisotropic property's presence are hockey-stick and over NMO-stretching.
A Python Based Multi-Point Geostatistics by using Direct Sampling Algorithm Edwin Brilliant; Sanggeni Gali Wardhana; Alissa Bilqis; Alda Ressa Nurdianingsih; Rafif Rajendra Widya Daniswara; Waskito Pranowo
Jurnal Geofisika Vol 18 No 2 (2020): Jurnal Geofisika
Publisher : Himpunan Ahli Geofisika Indonesia (HAGI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36435/jgf.v18i2.446

Abstract

Multi-Point Geostatistics (MPS) is a type of geostatistical method used to estimate the value of an unsampled location by utilizing several data points around it simultaneously. The MPS method estimates it by defining a model based on initial data in the form of a training image, which is a collection of data in the form of a geological conceptual model in the research area with the integration of geological and geophysical knowledge. The MPS method is currently starting to develop because it differs from conventional covariance-based geostatistical methods such as simple kriging and ordinary kriging, which only use a variogram based on the relationship between two points rapidly. In this study, we evaluated the use of the MPS method by using a direct sampling algorithm with Python that will directly sample the training image and then retrieve the data based on the sample data. A braided channel training image is used as the initial model to estimate the distribution of reservoir properties in lithology with sand and shale types. This study shows that MPS could reconstruct geological features better than kriging.
Pendampingan implementasi teknologi untuk melatih kemampuan empati anak autis selama masa pandemi Meredita Susanty; Waskito Pranowo; Erwin Setiawan; Intan Oktafiani; Randi Fermana; Akbar Barrinaya
Abdimas Siliwangi Vol 5, No 3 (2022): Oktober 2022
Publisher : IKIP SILIWANGI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/as.v5i3.10747

Abstract

Penetapan aturan social distancing berikut penutupan sekolah dan tempat hiburan anak selama penyebaran wabah COVID-19 menimbulkan kesulitan bagi anak untuk berinteraksi dengan lingkungan sosialnya. Keterbatasan akses ini menimbulkan kekhawatiran yang tinggi pada orangtua dengan anak yang memiliki diagnosa autisme karena kemampuan sosial anak ASD dapat menurun apabila tidak diberikan jumlah stimulasi sosial yang tinggi. Berdasarkan hasil penelitian di beberapa negara maju, virtual reality (VR) dilihat sebagai sebuah platform yang efisien, aman dan menarik bagi anak-anak dengan gangguan spektrum autisme untuk dapat melatih keterampilan sosialnya secara online. Melalui kegiatan pengabdian masyarakat ini, Universitas Pertamina bekerjasama dengan Fakultas Psikologi Universitas Padjadjaran untuk membangun aktivitas berbasis VR yang dapat digunakan untuk meningkatkan kemampuan sosial pada anak dengan diagnosa autisme. Aktivitas akan dirancang dalam bentuk permainan interaktif yang dapat menstimulasi kemampuan interaksi anak, seperti kemampuan untuk berempati, memusatkan atensi visual dan auditori ke lawan bicara, mengikuti instruksi verbal, mematuhi aturan dan menyelesaikan konflik sosial. Hasil dari program pengabdian kepada masyarakat ini di kemudian hari dapat digunakan sebagai alat bantu di dalam kegiatan terapi sosial oleh para profesional, seperti psikolog dan terapis yang bekerja dengan anak berkebutuhan khusus. Selain itu, orangtua dari anak autis juga dapat memanfaatkan alat ini untuk menstimulasi kemampuan anaknya di rumah.
PELATIHAN TSUNAMI READY DESA CIKAKAK YANG SIAP DAN SIAGA BENCANA Madrinovella, Iktri; Lubis, M. Husni Mubarak; Suhardja, Sandy Kurniawan; Zaky, Dicky Ahmad; Herawati, Ida; Pranowo, Waskito; Widyanti, Sari; Misbahudin, Misbahudin; Vikaliana, Resista; Mulyasari, Farah; Iskandar, Yelita Anggiane
Community Development Journal : Jurnal Pengabdian Masyarakat Vol. 4 No. 6 (2023): Volume 4 Nomor 6 Tahun 2023
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cdj.v4i6.23240

Abstract

Desa Cikakak di Sukabumi, Jawa Barat merupakan salah satu wilayah yang rawan gempa bumi dan tsunami. Untuk meminimalisir dampak bencana kepada masyarakat desa, dibutuhkan upaya pelatihan yang disebut IOWave23 agar mereka siap dan siaga jika terjadi kedaruratan. Pelatihan semacam ini perlu dilakukan secara berkala sebagaimana arahan Intergovernmental Oceanographic Commission (IOC), The United Nations Educational, Scientific and Cultural Organization) UNESCO. Terakhir diadakan 3 tahun lalu pada 2020 maka pelatihan harus disegerakan mengingat waktu ideal antar pelatihan adalah 2 tahun. Berkaca dari sejumlah bencana serupa di berbagai wilayah rawan di Indonesia maka kegiatan Pengabdian kepada Masyarakat (PkM) kali ini menjadi sangat penting karena memiliki tujuan utama memberikan pemahaman dan latihan langsung di lapangan terkait hal-hal yang harus dikuasai oleh masyarakat di wilayah rawan jika gempa bumi disertai tsuanmi melanda. Masyarakat terdampak perlu memahami hal-hal yang harus dilakukan saat terjadi bencana begitu juga setelahnya. Kegiatan utama pada PkM ini adalah drilling bencana beserta tindakan kesiapsiagaannya yang melibatkan ahli dan praktisi berpengalaman dari berbagai instansi seperti BMKG dan BPBD daerah. Target yang ingin dicapai dari program pelatihan ini peningkatan pengetahuan masyarakat Desa Cikakak mengenai kebencanaan gempa bumi dan tsunami, dan kesiapsiagaan menghadapinya.
Algoritma Komputasi Machine Learning untuk Aplikasi Prediksi Nilai Total Organic Carbon (TOC) Sanggeni Gali Wardhana; Henry Julois Pakpahan; Krisdanyolan Simarmata; Waskito Pranowo; Humbang Purba
Lembaran Publikasi Minyak dan Gas Bumi Vol. 55 No. 2 (2021): LPMGB
Publisher : BBPMGB LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Total Organic Carbon (TOC) merupakan salah satu parameter penting yang digunakan untuk mengevaluasi kemampuan source rock secara kuantitas. Pada umumnya, data TOC diperoleh melalui core yang kemudian dilakukan proses pirolisis rock-eval pada setiap perconto. Namun, proses tersebut memerlukan waku yang cukup lama dan biaya yang cukup besar sehingga data yang didapatkan jumlahnya terbatas. Hal ini akan berimplikasi terhadap validitas penyebaran nilai TOC pada tahapan eksplorasi batuan induk unkonvensional. Data yang terbatas dapat diprediksi dengan pendekatan pola karakterisitik data itu sendiri. Penelitian ini dilakukan bertujuan untuk melakukan prediksi nilai TOC dengan menggunakan algoritma machine learning yaitu Artificial Neural Network, K-Nearest Neighbors, Support Vector Regression, Decision Tree, dan Random Forest dengan memanfaatkan data sumur “A” untuk membangun model dari setiap algoritma machine learning dan data sumur “B” untuk mengevaluasi model yang telah dibangun berdasarkan data sumur “A”. Pengolahan data untuk memprediksi nilai TOC dimulai dari mempersiapkan data pada sumur “A” berdasarkan korelasi yang tinggi pada prediktor dan data output yang akan diprediksi. Selanjutnya dilakukan pembagian atau splitting datasets dengan presentase 60% data digunakan untuk melakukan training dan 40% data sebagai test datasets. Setelah itu, train datasets dapat digunakan untuk membangun model algoritma machine learning. Kemudian dilakukan hyperparameter tuning dan cross validation sehingga dapat dihasilkan model algoritma machine learning dengan hyperparameter tertentu dengan hasil prediksi yang konsisten. Model terbaik diperoleh berdasarkan hasil cross validation dengan menggunakan prediktor dari test datasets hasil splitting sumur “A” dan test datasets dari sumur baru “B”. Hasil penelitian menunjukan bahwa hasil prediksi TOC terbaik pada data sumur “A” diperoleh dengan menggunaan algoritma Random Forest dan pada sumur “B” menggunakan algoritma K-Nearest Neighbors.
PREDIKSI KECEPATAN GELOMBANG S DENGAN MACHINE LEARNING PADA SUMUR “S-1”, CEKUNGAN SUMATERA TENGAH, INDONESIA Sthevanie Dhita Sudrazat; Humbang Purba; Egie Wijaksono; Waskito Pranowo; Muhammad Irsyad Hibatullah
Lembaran Publikasi Minyak dan Gas Bumi Vol. 54 No. 1 (2020): LPMGB
Publisher : BBPMGB LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Data kecepatan gelombang S (shear) sangat diperlukan untuk karakterisasi reservoar dalam menentukan zona reservoar. Namun data kecepatan gelombang S sangat terbatas dan tersedia pada sumur tertentu saja. Penelitian ini dilakukan untuk memprediksi nilai kecepatan gelombang S dengan menggunakan metode supervised machine learning pada sumur S-1 lapangan migas di cekungan Sumatra Tengah. Simulasi algoritma machine learning dilakukan melalui tahapan sebelum dan setelah tuning pada algoritma library Scikit learn dan algoritma artificial neural network (ANN). Selain itu, parameter dan jumlah data yang digunakan dalam memprediksi nilai kecepatan gelombang akan menentukan nilai error dan akurasi. Hasil analisis menunjukkan bahwa algoritma yang digunakan untuk memperoleh akurasi terbaik pertama dalam memprediksi kecepatan gelombang S, yaitu random forest dengan nilai parameter n_estimator terbaik 10 dan algoritma kedua yang terbaik yaitu k-nearest neighbor dengan nilai parameter n_neighbor terbaik 5.
Estimasi Keandalan Sistem Mekanikal Dependen Menggunakan Fungsi Copula Ramadhani, Adhitya Ryan; Pranowo, Waskito
Jurnal Rekayasa Sistem Industri Vol. 13 No. 2 (2024): Vol. 13 No. 2 (2024): Jurnal Rekayasa Sistem Industri
Publisher : Universitas Katolik Parahyangan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26593/jrsi.v13i2.7219.103-112

Abstract

This paper addresses the challenge of assessing the reliability of complex mechanical systems where components are inherently correlated in their failure modes. Traditionally, the assumption of independence among these components has been employed, but it often fails to capture the real-world complexities. To overcome this limitation, copula functions are introduced as a robust methodology for modeling the dependent relationships between correlated variables within mechanical systems. This paper aims to demonstrate the utility of copulas in estimating system reliability while accounting for these dependencies. The results reveal that the Clayton copula emerges as the most suitable model for representing dependence in such systems. Importantly, the reliability estimates obtained through copula-based methods not only reflect the complex interdependencies accurately but also align with the principles of the boundary theory of reliability. This research underscores the potential of copula-based reliability estimation as a valuable alternative, offering a more comprehensive and precise assessment of reliability in complex mechanical systems and holding significant promise for practical engineering applications. This framework allows the consideration of dependence among the observed variables that is usually overlooked in engineering practice.
Shotwavemod: An Open Package For Acoustic 2D/3D Seismic Wavefield and Shot Acquisition Modeling Using the Pseudo Spectral Element and Finite Difference Methods Abdullah, Agus; Pranowo, Waskito; Ahmad Zaky, Dicky
Indonesian Journal on Geoscience Vol. 12 No. 1 (2025)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.12.1.75-87

Abstract

Shotwavemod is an open package for 2D/3D acoustic seismic wave simulation, using the Pseudo Spectral Element and Finite Difference Method. It can also be used for forward modeling of seismic reflection acquisition. The shotwavemod offers straightforward execution of the simulation process, yet customizable parameters. The algorithm was optimized using vectorization and parallel computation to speed up the computational time. The simulation results of the Pseudo Spectral Element Method was compared to the Finite Difference Method. It is observed that the Finite Difference Method resulted in ringing artifacts as a numerical dispersion, particularly for higher frequencies. Nevertheless, with higher computational cost, the Pseudo Spectral Element Method effectively handles this numerical dispersion issue. The shotwavemod was tested for a complex velocity model of the Marmousi. The results are quite promising, where shot gathers of seismic reflections are successfully established corresponding to the complex structure of the Marmousi. The shotwavemod is accessible to the public, and is a suitable tool for educational and research purposes involving seismic wave simulation.