Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Teknologi Informasi dan Ilmu Komputer

Penentuan Filterbank Wavelet Menggunakan Algoritma Mean Best Basis untuk Ekstraksi Ciri Sinyal Suara Ber-Noise Abdurahim, Abdurahim; Hidayat, Syahroni
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 1: Februari 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Belakangan ini filterbank berbasis wavelet sebagai ekstraktor ciri mulai banyak dikembangkan untuk dapat menggantikan peran ciri Mel Frequency Cepstral Coefficient (MFCC) dalam sistem pengenalan suara otomatis. Salah satu filterbank ciri wavelet yang dikembangkan adalah Wavelet-Packet Cepstral Coefficient (WPCC). Namun sejauh ini pengembangannya hanya difokuskan untuk suara tanpa noise. Sehingga penelitian ini bertujuan untuk mendesain WPCC untuk suara yang mengandung noise. Algoritma Mean Best Basis (MBB) dan fungsi wavelet db44 dan db45 digunakan untuk memperoleh desain filterbank WPCC. Suara yang digunakan adalah rekaman suara vokal bahasa Indonesia a, i, u, e, é, o, dan ó yang mengandung noise. Hasil menunjukkan telah terbentuk dua buah desain filterbank WPCC. Masing-masing merupakan hasil penerapan fungsi daubechies db44 dan db45. Noise tidak memberikan pengaruh terhadap pembentukan kedua filterbank WPCC tersebut. Kedua bentuk filterbank telah memenuhi standar bentuk filter MFCC terutama untuk variabel range dan skala frekuensinya. Range frekuensinya berkisar antara 125 Hz - 1000 Hz dengan bentuk skala yang linier untuk frekuensi di bawah 1000 Hz. Sehingga dapat disimpulkan kedua bentuk filterbank WPCC ini dapat dipertimbangkan untuk digunakan sebagai ekstraktor ciri suara ber-noise. AbstractRecently wavelet-based filterbanks as feature start extractors have been widely developed to replace the role of the Mel Frequency Cepstral Coefficient (MFCC) feature in automatic speech recognition systems. One of the wavelet feature filterbanks developed is Wavelet-Packet Cepstral Coefficient (WPCC). But so far the development has only been focused on clean speech signal. So, the aim of this study is designing WPCC for a noisy speech signal. The Mean Best Basis (MBB) algorithm and db44 and db45 wavelet functions are applied to obtain the WPCC filterbank design. The noisy speech signal used is the recorded utterance Indonesian vowels a, i, u, e, é, o, and ó. The results show that two WPCC filterbank designs have been formed. Each of them is the result of applying the daubechies db44 and db45 functions. Noise has no effect on the establishment of both the WPCC filterbanks. Both fiterbank designs have met MFCC filter form standards, especially for its range of frequency and frequency scale. Its range of frequency is between 125 Hz - 1000 Hz with a linear scale for frequencies below 1000 Hz. Therefore it can be concluded that the two forms of WPCC filterbank can be considered to be used as a feature extractor for a noisy speech signal.
Sistem Pengenalan Pembicara dengan Metode Wavelet-MCFF dan Pengklasifikasi Hidden Markov Models (HMM) Hidayat, Syahroni; Anas, Andi Sofyan; Yusuf, Siti Agrippina Alodia; Tajuddin, Muhammad
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 1: Februari 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0813284

Abstract

Penelitian pengolahan sinyal digital yang berfokus pada pengenalan pembicara telah dimulai sejak beberapa dekade yang lalu, dan telah menghasilkan banyak metode-metode pengenalan pembicara. Di antara algoritma pembentukan koefisien ciri yang telah dikembangkan tersebut, ada dua algoritma yang dapat memberikan akurasi yang tinggi jika diterapkan pada sistem, yaitu Mel Frequency Cepstral Coefficient (MFCC) dan Wavelet. Penelitian ini bertujuan untuk menguji dan memilih kanal terbaik dari proses wavelet-MFCC yang dapat dijadikan sebagai koefisien ciri baru untuk diterapkan pada sistem pengenal pembicara. Koefisien ciri baru tersebut kemudian disebut dengan koefisien ciri Wavelet-MFCC. Kofisien ini dibentuk dari merubah kanal hasil dekomposisi wavelet, yaitu kanal aproksimasi (cA), kanal detail (cD), dan penggabungannya (cAcD), menjadi koefisien MFCC. Metode dekomposisi wavelet yang digunakan adalah metode dyadic dengan menerapkan level dekomposisi level 1 dan level 2. Setiap koefisien ciri kemudian menjadi inputan pada sistem pengklasifikasi Hidden Markov Models (HMM). Keluaran dari HMM kemudian dihitung akurasinya dan dianalisis. Dari pengujian yang dilakukan, diperoleh bahwa kanal detail (cD) sebagai ciri dapat memberikan akurasi yang sama dengan menggunakan kanal gabungan (cAcD) dan lebih tinggi dari kanal aproksimasi (cA), dengan akurasi sebesar 95%. Hal ini menunjukkan bahwa, kanal detail pada dekomposisi level 1 menyimpan ciri suara dari setiap pembicara sehingga sudah cukup untuk dijadikan sebagai koefisien ciri. Maka, penggunaan dekomposisi level 1 dan kanal detail cD sebagai ciri Wavelet-MFCC pada sistem pengenalan pembicara dapat meringankan dan mempercepat proses komputasi. AbstractResearch in digital signal that focused on speaker recognition has begun since decades ago, and has resulted many speaker recognition methods. there are two algorithms that can provide high accuracy in recognition system, which are Mel Frequency Cepstral Coefficient (MFCC) and Wavelet. the aims of this study is to examine and chose the best channel from wavelet-MFCC process that can be used as new feature coefficient, then called as Wavelet-MFCC features coefficient. The coefficient is built by converting the wavelet decomposition channels, which are approximation (cA), detail (cD), and its combination (cAcD), into the MFCC coefficient. Wavelet dyadic decomposition with level 1 and level 2 of decomposition is applied. Each feature coefficient acts as an input to the HMM classifier. The accuracy of the HMM output is calculated, then analyzed. The obtained results show that the detail chanel (cD) achieve equal accuracy as the combination chanel (cAcD), and higher accuracy compared to aproximation channel (cA), with accuracy 95%. Thus, it can be conclude that the detail channel on level 1 decomposition contains features of each speaker's. Then, cD is enough to be used as a Wavelet-MFCC feature. Thus, its implementation in the SRS can ease and speed up the computing process.
Transformasi Lontar Babad Lombok Menuju Digitalisasi Berbasis Natural Gradient Flexible (NGF) Anwar, Muhammad Tajuddin; Hidayat, Syahroni; Adil, Ahmat
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 2: April 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021824088

Abstract

Suku Sasak, yang tinggal di pulau Lombok Nusa Tenggara Barat, memiliki tradisi penulisan di daun lontar (Borassus Flabellifer) kering, salah satunya adalah naskah Lontar Babad Lombok. Naskah Lontar Babad Lombok seiring berlalunya waktu, menjadi rapuh dan mudah patah sehingga memerlukan perawatan. Keadaan ini mendorongnya perlu dilakukan digitalisasi naskah lontar babad lombok sebagai bentuk pelestarian sehingga para generasi Milenial, khususnya di Lombok, dapat menikmati lontar babad lombok. Digitalisasi citra tersebut tantangan utama adalah tepi kabur teks dan perbedaan minimum antara teks dan bagian non-tekssebagai akibat dari proses perawatan. Oleh karena itu, dibutuhkan proses peningkatan kualitas citra hasil digitalisasi agar tulisan dapat lebih jelas terbaca. Salah satu metode yang terbukti mampu untuk memisahkan teks dari latar belakang yang sangat berkorelasi adalah Natural Gradient Flexibel (NGF) berbasiskan Independent Component Analysis (ICA), NGF-ICA. Penelitian ini bertujuan untuk melakukan peningkatan kualitas citra digitalisasi sebelum diumpankan pada database dan sistem informasi yang telah dibangun. Kualitas citra yang telah ditingkatkan diukur menggunakan metode MSE dan PSNR untuk tingkat kemiripannya, dan metode Entropi dan SSIM untuk informasi dan perspektif visual. Hasil penelitian menunjukkan bahwa penerapan algoritma NGF-ICA dapat memberikan citra keluaran dengan kualitas yang tinggi dengan nilai rata-rata MSE, PSNR, SSIM dan peningkatan Entropi sebesar 708, 19.95 db, 0.87 dan 0.45, secara berturut-turut. AbstractSasak tribe, who lives on Lombok Island, West Nusa Tenggara, has been writing manuscripts on dry palm leaves (Borassus Flabellifer) as a tradition, one of the manuscripts is Lontar Babad Lombok. As time pass by, the manuscript becomes brittle and breaks easily, therefore maintenances are required. this situation force the need to digitalize the manuscript as an act of preservation, hence the millennial generation, especially on Lombok Island, can enjoy the manuscript. the main challenge is the blurry edge of the text and the slight difference between the text and non-text part caused by the treatment process. Hence, it is needed to enhance the quality of the digitalize image to make the manuscript can be more clearly read. One of the proven methods that able to separate text from highly correlated backgrounds is Natural Gradient Flexibel (NGF) based on Independent Component Analysis (ICA), NGF-ICA. The aim of this study is to improve the quality of the digitized images before they fed into the database and information system that has been built. The enhanced image quality was measured, MSE and PSNR methods were used to measure the similarity level, and the Entropy and SSIM method were used to measure the information and visual perspective. The results show that the application of the NGF-ICA algorithm can generate high-quality output images with average values of MSE, PSNR, SSIM, and increasing Entropy by 708, 19.95 dB, 0.87, and 0.45, respectively.