Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Teknokes

Fuzzy Logic Temperature Control on Baby Incubator Transport Battery Efficiency Co’o, Yohanes Cristomus; Wisana, I.D.G. Hari; Kholiq, Abd
Jurnal Teknokes Vol. 17 No. 1 (2024): March
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Baby incubator transport is a life support tool used to maintain the body temperature of newborn babies during transportation from one place to another, such as from a hospital to an intensive care center with more complete facilities. The problem that often occurs in transport incubators is limitations in the power system. Baby incubator transport uses a battery as the main power source. However, the limited battery power can cause risks to the baby if there is a problem with the power system or the battery runs out. This study aims to monitor the remaining battery voltage in a transport baby incubator that uses fuzzy logic to control the temperature inside and will compare with the performance of PID control. This research uses a fuzzy logic method to control temperature and maximize battery power. In this study, researchers only looked at the efficiency of the fuzzy logic method in temperature control and the battery that will be used. The research uses a display that will display the battery voltage and current values, battery power percentage, skin temperature, chamber temperature, humidity and the selected temperature control. The module that has been made is then compared with the Digital Multimeter measuring instrument. From the results of data collection, the measurement of the remaining battery voltage between the sensor reading and the measuring instrument has a difference where at a temperature of 34 ºC it is 2.1%, at a temperature of 35 ºC it is 2% and at a temperature of 36 ºC it is 3.9%. When compared to research using PID control, fuzzy logic takes longer to reach the desired temperature and demands more battery power when compared to PID control.
PID Temperature Control of Baby Incubator Transport Battery Efficiency Vidaryanto, Angga; Wisana, I.D.G Hari; Kholiq, Abd; Dewiningrum, Riqqah
Jurnal Teknokes Vol. 17 No. 1 (2024): March
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Transport baby incubators are used to keep babies warm and safe while in transport using battery voltage sources or DC electricity, which are portable and can be used without getting a supply of electrical energy. The problem that often occurs with this tool is the limited battery power system. causes a risk to the infant in the event of power failure or battery exhaustion. We aim to evaluate the battery efficiency of Baby Incubator Transport using a PID temperature controller. The evaluation is done by comparing and analyzing the battery voltage of the device to the standard device, as well as considering the setting temperature and duration of use of the device so that it can provide convenience in evacuating babies in an emergency. The tool uses the PID method to control temperature and maximize battery power. In this design, researchers only look at the efficiency of the PID method on temperature control and the battery to be used. This module will have a display that will display the battery voltage value, battery voltage percentage, skin temperature, chamber temperature, humidity, and temperature control that has been selected in the form of a graph. Compared with the digital multimeter measuring instrument. From the results of data collection, it can be concluded that the PID method has a faster rise time to reach the setting temperature, while the fuzzy method has a longer rise time to reach the setting temperature. However, the PID method requires more battery power than the Fuzzy method. The measurement results between the display and the measuring device have a difference of 3.1% at 34°C, at 35°C it is 3.9%, and at 36°C it is 4.7%. The biggest error is at a temperature of 36ºC, the smallest is at a temperature of 34ºC. Based on the results of the observation analysis of battery power consumption, it is found that the smaller the battery energy, the smaller the current issued, as well as the voltage issued. But if the load is large, the current is inversely proportional to the center, the battery voltage decreases while the current increases.