Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Konsultasi Stunting Balita Menggunakan Large Language Models (LLMs) Tanwir, Tanwir; Hidjah, Khasnur; Susilowati, Dyah
Reputasi: Jurnal Rekayasa Perangkat Lunak Vol. 6 No. 1 (2025): Mei 2025
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/reputasi.v6i1.8961

Abstract

Stunting pada balita merupakan masalah kesehatan kritis di Indonesia yang memerlukan intervensi berbasis teknologi untuk meningkatkan akses informasi nutrisi. Penelitian ini bertujuan mengembangkan chatbot konsultasi stunting berbasis Large Language Models (LLMs) guna menyediakan rekomendasi kesehatan yang akurat dan mudah diakses. Metode yang digunakan berupa Model LLaMA 3 di-fine-tuning menggunakan dataset Q&A spesifik stunting berisi 7.642 entri, kemudian dievaluasi dengan matrik ROUGE untuk mengukur kesesuaian semantik respons. Hasil menunjukkan model Stunting mencapai skor ROUGE-1 (72,24%), ROUGE-2 (64,54%), ROUGE-L (70,42%), dan ROUGE-Lsum (70,96%), secara signifikan melampaui model baseline seperti LLaMA3, Deepseek-R1, dan Mistral. Chatbot diimplementasikan dalam aplikasi web berbasis cloud dengan arsitektur terdistribusi, dilengkapi enkripsi SSL dan HTTPS untuk menjamin keamanan data. Sistem ini memungkinkan interaksi real-time antara pengguna dan model LLMs melalui antarmuka berbasis Gradio. Temuan penelitian mengonfirmasi potensi LLMs dalam menyederhanakan layanan kesehatan preventif, khususnya di daerah dengan sumber daya terbatas
Peningkatan Kinerja Klasifikasi Scabies Sapi MenggunakanEdited Nearest Neighbours (ENN) pada Model Random Forestdan XGBoost Ihsan, M. Khaerul; Maulana, Muhammad; Tanwir, Tanwir; Mas’ud, Abi; Hanif, Naufal; Resmiranta, Dading Oktaviadi
Jurnal Bumigora Information Technology (BITe) Vol. 7 No. 2 (2025)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/bite.v7i2.6055

Abstract

Background: Scabies disease in cattle causes significant economic losses for farmers due to declines in the animals’physical condition and productivity.Objective: This study aims to evaluate the effectiveness of the Edited Nearest Neighbours (ENN) method in improvingclassification performance for scabies in cattle.Methods: This research employs machine learning methods, including Random Forest and XGBoost. A dataset of 600clinical symptom samples was converted to numerical data and cleaned of noise using the ENN technique.Result: Applying ENN significantly improved the accuracy of both the Random Forest and XGBoost models, increasing itfrom around 0.60 to 0.91. In addition, both models achieved a perfect recall of 1.00, indicating maximum capability todetect positive cases.Conclusion: This study concludes that noise reduction using ENN can produce a more accurate and reliable diagnosticsystem. This method is highly recommended to optimize the performance of classification algorithms on animal clinicaldata with high levels of inconsistency. 
Pengenalan Bahasa Isyarat Hijaiyah: Augmentasi Data dengan EfficientnetB7 Tanwir, Tanwir; Husain, Husain; Hammad, Rifqi; Anas, Andi Sofyan; Azwar, Muhammad
Jurnal Teknologi Informasi dan Multimedia Vol. 7 No. 4 (2025): November
Publisher : Sekawan Institut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v7i4.728

Abstract

Sign language plays an important role as the primary means of communication for individuals with hearing impairments. This study aims to improve the accuracy of hijaiyah sign language detection through the application of the EfficientNetB7 architecture and data augmentation tech-niques. The method used, namely the EfficientNetB7 algorithm, was chosen as the base model be-cause of its ability to balance high accuracy with optimal resource utilization by performing data augmentation with rescale, shear, zoom, rotation, and flip horizontal techniques applied to enrich the variation of the original dataset of 6,811 images to 105,615 images. The experimental results show that the combination of EfficientNetB7 and data augmentation produces 99% accuracy on the test data, with consistent performance seen from the confusion matrix and accuracy loss graph for 50 epochs. This study proves that this approach not only improves model generalization but also reduces the risk of overfitting, thus potentially supporting social inclusion through efficient and reliable technology.