Tanwir, Tanwir
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Konsultasi Stunting Balita Menggunakan Large Language Models (LLMs) Tanwir, Tanwir; Hidjah, Khasnur; Susilowati, Dyah
Reputasi: Jurnal Rekayasa Perangkat Lunak Vol. 6 No. 1 (2025): Mei 2025
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/reputasi.v6i1.8961

Abstract

Stunting pada balita merupakan masalah kesehatan kritis di Indonesia yang memerlukan intervensi berbasis teknologi untuk meningkatkan akses informasi nutrisi. Penelitian ini bertujuan mengembangkan chatbot konsultasi stunting berbasis Large Language Models (LLMs) guna menyediakan rekomendasi kesehatan yang akurat dan mudah diakses. Metode yang digunakan berupa Model LLaMA 3 di-fine-tuning menggunakan dataset Q&A spesifik stunting berisi 7.642 entri, kemudian dievaluasi dengan matrik ROUGE untuk mengukur kesesuaian semantik respons. Hasil menunjukkan model Stunting mencapai skor ROUGE-1 (72,24%), ROUGE-2 (64,54%), ROUGE-L (70,42%), dan ROUGE-Lsum (70,96%), secara signifikan melampaui model baseline seperti LLaMA3, Deepseek-R1, dan Mistral. Chatbot diimplementasikan dalam aplikasi web berbasis cloud dengan arsitektur terdistribusi, dilengkapi enkripsi SSL dan HTTPS untuk menjamin keamanan data. Sistem ini memungkinkan interaksi real-time antara pengguna dan model LLMs melalui antarmuka berbasis Gradio. Temuan penelitian mengonfirmasi potensi LLMs dalam menyederhanakan layanan kesehatan preventif, khususnya di daerah dengan sumber daya terbatas