Claim Missing Document
Check
Articles

Found 8 Documents
Search

Front Cover Vol. 19 No. 1 Nursam, Natalita Maulani
Jurnal Elektronika dan Telekomunikasi Vol 19, No 1 (2019)
Publisher : Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Back Cover Vol. 19 No. 1 Nursam, Natalita Maulani
Jurnal Elektronika dan Telekomunikasi Vol 19, No 1 (2019)
Publisher : Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Appendix Vol. 19 No. 1 Nursam, Natalita Maulani
Jurnal Elektronika dan Telekomunikasi Vol 19, No 1 (2019)
Publisher : Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Preface Vol. 19 No. 1 Nursam, Natalita Maulani
Jurnal Elektronika dan Telekomunikasi Vol 19, No 1 (2019)
Publisher : Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PENGARUH MATERIAL COUNTER ELECTRODE PADA DYE-SENSITIZED SOLAR CELL Nursam, Natalita Maulani
Metalurgi Vol 34, No 3 (2019): Metalurgi Vol. 34 No. 3 Desember 2019
Publisher : Pusat Penelitian Metalurgi dan Material - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1250.555 KB) | DOI: 10.14203/metalurgi.v34i3.489

Abstract

Sel surya tersensitasi pewarna atau dye-sensitized solar cell (DSSC) merupakan sel surya generasi ketiga yang teknologinya sangat menjanjikan untuk  untuk menjadi alternatif sel surya berbasis silikon. DSSC umumnya memiliki dua bagian utama, yaitu working electrode (anoda) dan counter electrode (katoda). Counter electrode memiliki peran krusial pada DSSC, utamanya sebagai katalis untuk mempercepat reaksi reduksi-oksidasi pada elektrolit. Dengan demikian, pemilihan jenis material pada bagian counter electrode memiliki pengaruh signifikan terhadap performa DSSC secara keseluruhan. Platina merupakan salah satu material yang sangat umum digunakan pada counter electrode DSSC dikarenakan karakteristiknya yang hampir mendekati counter electrode ideal. Material counter electrode lain seperti karbon dan poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) juga digunakan sebagai alternatif counter electrode platina yang memiliki harga yang mahal dan persediaan terbatas. Dalam paper review ini akan dibahas mengenai berbagai usaha yang dilakukan untuk meningkatkan performa DSSC menggunakan counter electrode platina, karbon dan PEDOT:PSS. Usaha tersebut meliputi peningkatan aktivitas katalis, konduktivitas, porositas, dan luas permukaan counter electrode. Beberapa penelitian telah membuktikan bahwa karbon dan PEDOT:PSS mampu menghasilkan performa DSSC yang mendekati dan bahkan melebihi counter electrode platina. Pengaruh variasi metode deposisi dan jenis komponen lain seperti fotoanoda, dye, dan elektrolit terhadap performa DSSC dengan counter electrode platina, karbon dan PEDOT:PSS juga dibahas dalam paper ini. Pemilihan material dan komponen DSSC yang sesuai, sangat penting dilakukan untuk menghasilkan sel surya dengan performa tinggi.
Colloidal TiO2-Modified Mesoporous Electron Transport Layer in Perovskite Solar Cells Yustiani, Evira Bella; Anggraini, Putri Nur; Shobih, Shobih; Widianto, Eri; Retnaningsih, Lilis; Soepriyanto, Syoni; Santoso, Imam; Nursam, Natalita Maulani
Jurnal Elektronika dan Telekomunikasi Vol 23, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jet.599

Abstract

The electron transport layer (ETL) is a crucial part in perovskite solar cells (PSC) as it specifically governs the charge extraction at the perovskite/ETL interface. In this study, methylammonium lead iodide-based PSCs with an n-i-p structure were fabricated and modified by adding colloidal TiO2 into the mesoporous TiO2 film as ETL. The effect of the colloidal TiO2 addition on the PSC performance was investigated for ETL comprising different types of TiO2 particles, i.e. P25 and anatase TiO2. Despite producing lower performance than the PSC made with commercial paste, the power conversion efficiency of the PSCs could be improved with the introduction of colloidal TiO2 solution. An optimum condition was observed depending on the type of TiO2 particle, where the best performing device was achieved with colloidal TiO2 of 0.4 and 0.2 mL for P25 and anatase TiO2, respectively. The amount of colloidal TiO2 in samples with P25 overall had less impact than the samples with anatase TiO2.
The Addition of C, Zn-C, and Sn-C on Anatase Titanium Dioxide (TiO2) for Dye-Sensitized Solar Cells Application Novianti, Ressa Muhripah; Nursam, Natalita Maulani; Shobih, Shobih; Hidayat, Jojo; Soepriyanto, Syoni
Metalurgi Vol 38, No 1 (2023): Metalurgi Vol. 38 No. 1 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1373.041 KB) | DOI: 10.55981/metalurgi.2023.686

Abstract

DSSC (dye-sensitized solar cell) is a third-generation photovoltaic technology that can convert solar energy into electric current using a photoelectrochemical mechanism. Photoelectrode is one of the significant elements in DSSC, where photoexcited electrons are generated, and serves as an electron transport medium. Anatase titanium dioxide (TiO2) is often used as photoelectrode material because of its excellent photoactivity, high stability, non-toxicity, environmental friendliness, and low price. Many DSSC modifications have been conducted to overcome the efficiency limitations in DSSC, and one of them is carried out by modifying the TiO2 via doping. In this study, TiO2 doped with C and co-doping with Zn (Zn-C) and Sn (Sn-C) were prepared using sol-gel reactions, and they were subsequently applied and tested as photoelectrode in DSSC. The results showed that undoped and doped TiO2 had a porous spherical morphology with inhomogeneous particle sizes. The addition of C, Zn-C and Sn-C dopants has reduced in the crystallite size and the band gap energy of TiO2. The efficiency of DSSC with undoped TiO2 DSSC was 3.83%, while the best performance was obtained from DSSC C-TiO2 with an efficiency of 4.20%. In contrast, the DSSC with Zn-C-TiO2 and Sn-C-TiO2 co-doping produced unexpectedly lower efficiency of 0.71% and 0.85%, respectively.
Comparative Analysis of Charge Recombination Dynamics in Dye-Sensitized Solar Cells with different Counter Electrodes Azizah, Evi Nur; Nurhayati, Nunik; Al Jazeera, Lalu Jihad; Yuliantini, Lia; Hatta, Mohammad; Amrillah, Tahta; Nursam, Natalita Maulani; Firdaus, Yuliar
Jurnal Elektronika dan Telekomunikasi Vol 25, No 1 (2025)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jet.703

Abstract

Counter electrodes are essential in dye-sensitized solar cells (DSSCs) for facilitating charge transfer and catalyzing the regeneration of the electrolyte, impacting overall efficiency. Common counter electrode materials include platinum (Pt), poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), and graphene, each with distinct advantages and challenges. Pt, a traditional choice, offers excellent catalytic activity but is expensive and scarce. PEDOT:PSS, a conductive polymer, is cost-effective and easily deposited but often suffers from high recombination losses and lower efficiency. Graphene, known for its high conductivity and large surface area, is emerging as a promising alternative. However, a lack of comparative studies on how different counter electrode materials influence recombination dynamics limits the understanding needed for optimizing DSSC performance. This study addresses this gap by examining Pt, graphene, and PEDOT:PSS -based counter electrodes, analyzing their effects on charge transfer, recombination behaviour, and efficiency through J-V measurements, charge extraction, and transient photocurrent (TPC) as well as transient photovoltage (TPV) analyses. Graphene-based DSSCs show superior performance, achieving the highest photocurrent density and power conversion efficiency up to 5.12% at an intensity equivalent to 1 sun (100 mWcm-2), due to enhanced charge extraction and minimized recombination. TPC data reveal that graphene supports faster charge transport, while TPV analysis shows longer electron lifetimes than PEDOT:PSS-based DSSCs. In contrast, PEDOT:PSS-based DSSCs exhibit high recombination losses, lower photocurrent, and s-shaped J-V curves, indicating high resistance of limited charge transfer efficiency. These findings highlight graphene’s potential as an optimal counter electrode material for efficient, high-performance DSSCs.