AbstrakTeknologi terus maju, terutama dalam komunikasi, pendidikan, dan informasi. Pendidikan online semakin diminati di banyak lembaga pendidikan, mendorong perlunya pemahaman sejauh mana peserta didik dapat beradaptasi dengan lingkungan online. Memprediksi tingkat adaptasi peserta didik menjadi penting untuk meningkatkan efektivitas dan kualitas pengalaman belajar. Dalam penelitian ini, menggunakan dataset dari Kaggle, metode Extra Trees Classifier dioptimalkan dengan Hyperparameter Tuning Grid Search CV. Sebelum optimalsi, akurasi mencapai 95.85%, setelahnya meningkat menjadi 96.26%, menunjukkan peningkatan sebesar 0.41%. Implementasi metode Extra Trees Classifier dengan optimasi Hyperparameter Tuning Grid Search CV lebih unggul dibandingkan penggunaan algoritma tanpa optimasi.Kata kunci: Prediksi, Extra Trees, Classifier, Hyperparameter, CVAbstractTechnology continues to advance, especially in communication, education and information. Online education is increasingly in demand in many educational institutions, prompting the need to understand the extent to which learners can adapt to the online environment. Predicting learners' adaptation level is important to improve the effectiveness and quality of the learning experience. In this study, using a dataset from Kaggle, the Extra Trees Classifier method was optimized with Hyperparameter Tuning Grid Search CV. Before optimization, the accuracy reached 95.85%, after which it increased to 96.26%, showing an improvement of 0.41%. The implementation of the Extra Trees Classifier method with Hyperparameter Tuning Grid Search CV optimization is superior to the use of the algorithm without optimization.Keywords: Prediction, Extra Trees, Classifier, Hyperparameter, CV