Claim Missing Document
Check
Articles

Found 2 Documents
Search

Assessing the energy efficiency of fossil fuel in ASEAN Syed Ali, Sharifah Aishah; Abdul Rahman, Ahmad Shafiq; Mohamad, Muhamad Fathul Naim; Supian, Latifah Sarah; Mohd Zahari, Haliza; Razali, Mohd Norsyarizad
International Journal of Renewable Energy Development Vol 12, No 6 (2023): November 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.57601

Abstract

The world's industries, transportation systems, and households rely heavily on fossil fuels despite their limited availability and high carbon content. Therefore, it is of the utmost importance to improve fossil fuel energy efficiency in order to facilitate the shift towards a sustainable energy system with reduced greenhouse gas emissions. This paper employs a slacks-based measure network data envelopment analysis model with undesirable outputs to assess the efficiencies of fossil fuel energy in the Association of Southeast Asian Nations (ASEAN) countries during a span of seven years, specifically from 2015 to 2021. The inclusion of undesirable outputs in this study is important because it allows for a more realistic assessment of efficiency by considering factors like CO2 emissions, which are undesirable outcomes associated with fossil fuel use. The datasets utilised in this study are sourced from the U.S. Energy Information Administration and the open data website of Our World in Data. Based on the findings, it can be observed that Singapore and the Philippines have demonstrated outstanding performance in maximising the utilisation of fossil fuels. In contrast, Myanmar exhibits the lowest level of efficiency in this analysis. By identifying top-performing countries in terms of fossil fuel efficiency, it is possible to implement measures to boost efficiency in under-performing countries. This can be achieved through the promotion and adoption of cleaner energy alternatives, specifically renewable energy sources that exhibit a low or negligible carbon footprint. These findings offer significant contributions to policymakers exploring sustainable energy usage, environmental stewardship, and the formulation and execution of comprehensive strategies that aim to mitigate carbon dioxide emissions arising from the consumption of fossil fuels in the ASEAN region.
Instrumented model slope to investigate the influence of rainfall and slope gradient on matric suction Jelani, Jestin; Ahmad Ishak, Aina Syahirah; Ahmad, Nordila; Suif, Zuliziana; Wan Suhaili, Wan Mohamad Adham Hanis; Ahmad Mazuki, Ahmad Loqman; Supian, Latifah Sarah
SINERGI Vol 29, No 2 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2025.2.025

Abstract

Prior researchers indicated that prolonged and heavy rainfalls primarily trigger major landslides in Malaysia. This study was carried out to investigate the influence of rainfall on the matric suction of silty sand slopes through a small-scale model. A 35° and 45° slope (namely EXP1 and EXP2) models were built using soil samples from the former landslide site at Kemensah Heights, Selangor, Malaysia. Two types of sensors were used to measure matric suction and rainfall intensities using Watermarks 200SS Soil Moisture Sensor and Hydreon rain gauge RG-15, respectively. The elapsed time since the beginning of the rainfall was recorded using two cameras placed at the front and side of the slope model to observe progressive failure. The results showed that the initial matric suction with a value of 250 kPa is significantly reduced and approached 0 kPa when the range of cumulative rainfall intensity is between 30 and 36.75 mm/min and 5.25 and 6.75 mm/min recorded by PP1 and PP2 in EXP1 and EXP2, respectively. The results indicate that the reduction in matric suction induced by rainwater infiltration is the triggering mechanism of slope failure. It has also been noticed that rainfall infiltration increases with decreasing slope gradients. However, a small gradient slope requires longer rainfall prior to failure. A slope with a high gradient has a longer time before failure occurs after loss of matric suction than a low slope gradient.