Claim Missing Document
Check
Articles

Found 25 Documents
Search

Evaluasi Kinerja Sparse Matrix-vector Multiplication Menggunakan Format Penyimpanan Csr Dan Bcsr Pada Mpi Akyas Khaqqi Maulana; Fitriyani Fitriyani
eProceedings of Engineering Vol 4, No 1 (2017): April, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Banyak permasalahan di dunia ini yang dimodelkan dengan matematika dalam proses penyelesaiannya, salah satunya memodelkan dalam bentuk matriks, Banyak penelitian menggunakan matriks jarang yang dihitung menjadi Sparse Matrix-Vector Multiplication (SpMV) dalam benchmarking perangkat keras mereka, dengan tujuan mendapatkan waktu optimal dalam mengeksekusi matriks tersebut, sehingga semakin cepat waktu eksekusinya, akan semakin baik kinerja dari perangkat keras mereka. Untuk mempermudah pemetaan matriks dibutuhkan format penyimpanan yang baik pula, format penyimpanan ini akan berfungsi penuh saat pemetaan matriks dan mempermudah pembacaan suatu matriks yang sudah di konversi dari matriks koordinat,penelitian ini akan menggunakan dua format penyimpanan yaitu CSR dan BCSR. , kinerja kedua format ini di evaluasi dan di jalankan pada personal computer dengan dua mekanisme yaitu secara serial dan parallel, pada mekanisme parallel akan dijalankan dengan protokol komunikasi MPI. Hasil pengujian menggunakan beberapa matriks dengan tipe data yang berbeda-beda dan dengan ukuran baris kolom yang beragam, masing-masing matriks di eksekusi dengan lima iterasi agar mendapatkan hasil yang optimal, masing-masing format penyimpanan menghasilkan hasil yang beragam, disebabkan oleh ukuran matriks dan sebaran data pada matriks koordinat, pada format CSR peningkatan kecepatan sebanyak 229 kali terdapat pada thread 3 menuju thread 4, pada dan pada format BCSR, peningkatan kecepatan 300 kali lebih cepat pada thread 4, namun penurunan kecepatan pada thread 3 untuk setiap matriks, dalam hal ini dapat disimpulkan setiap metode memiliki keunggulan dan kelemahan tersendiri dalam mengeksekusi SpMV. Yaitu pengaruh pada ukuran matriks dan sebaran data pada matriks tersebut. Kata kunci: SpMV, CSR, BCSR, MPI, thread
Implementasi Sistem Grid Computing Berbasis Cluster Di Prodi Ilmu Komputasi Andi Farid Arif Nur; Fitriyani Fitriyani; Izzatul Ummah
eProceedings of Engineering Vol 3, No 1 (2016): April, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Grid computing adalah teknologi komputasi terdistribusi yang memanfaatkan sumber daya yang terhubung  melalui  jaringan  komputer  secara  bebas  tapi  terkoordinasi dengan  mekanisme  tertentu. Dengan menyediakan sumber daya yang dapat dipakai bersama dapat mempermudah akses dan meningkatkan Quality of Service. Pembangunan infrastruktur Grid computing tidaklah mudah karena membutuhkan kemampuan dan pengalaman di dalam instalasi dan konfigurasi program berbasis Linux. Tujuan akhir dari penelitian ini, penulis membangun infrastruktur Grid computing berbasis pada cluster yang  akan  dijadikan  sebagai  sumber  daya  back-end  dengan  menggunakan  Globus  Tookit  sebagai midlleware pengalokasian sumber daya. Penelitian ini menggunakan jaringan lokal Universitas Telkom. Kata kunci: grid computing, globus toolkit, cluster
Kriptanalisis Md5 Dengan Menggunakan Pendekatan Komputasi Kinerja Tinggi Rizky Alfiansyah; Fitriyani Fitriyani; Nurul Ikhsan
eProceedings of Engineering Vol 2, No 2 (2015): Agustus, 2015
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak MD5 merupakan sebuah algoritma kriptografi hash function yang banyak digunakan sebagai digital signature dari sebuah file atau sebagai enkripsi password dalam database. Salah satu teknik kriptanalisis yang bisa diterapkan untuk menembus enkripsi MD5 adalah exhaustive key search. Kebutuhan performa komputasi tingkat tinggi dari teknik ini akan diatasi dengan penggunaan dua buah GPU kelas high-end (NVIDIA & AMD), dengan kriptanalisis yang diimplementasikan secara paralel dengan menggunakan bahasa CUDA dan OpenCL. Pengujian dilakukan dengan menggunakan 1 s/d 9 digit random string yang berdasar dari 65 macam karakter. Hasil pengujian menunjukkan sebuah high-end GPU memiliki batas kemampuan kriptanalisis hingga 8 s/d 9 digit random string, dengan waktu kriptanalisis terlama mencapai lebih dari 1 minggu. Sedangkan untuk perbandingan performansi, OpenCL pada GPU AMD menghasilkan performa terbaik jika dibandingkan dengan CUDA & OpenCL pada GPU NVIDIA. Kata kunci : MD5, Kriptanalisis, CUDA, OpenCL, GPU.
Paralelisasi Klasifikasi Data Ekspresi Gen Kanker Dengan Algoritma Deep Neural Network Menggunakan Stacked Sparse Autoencoder Aswindo Putra; Jondri Jondri; Fitriyani Fitriyani
eProceedings of Engineering Vol 5, No 3 (2018): Desember 2018
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian bidang bioinformatika menjadi populer saat ini sebagai solusi bagi dunia medis. Salah satunya klasifikasi penyakit kanker menggunakan data gene expression. Deep learning telah menjadi penelitian yang menarik pada bidang bioinformatika. Banyak penelitian tentang klasifikasi kanker yang diangkat menggunakan deep learning. Klasifikasi menggunakan data gene expression berguna di dunia medis. Karena dapat mengklasifikasikan penyakit hanya menggunakan gen. Penelitian ini mengangkat klasifikasi gene kanker menggunakan metode deep neural network dengan stacked spare autoencoder dan autoencoder sebagai metode extraksinya. Selain itu digunakan juga sparse autoencoder sebagai representasi dari pembelajaran neural network. Ini digunakan untuk mengurangi masalah saat pembelajaran. Fine-tune digunakan sebagai optimasi bobot dan bias untuk jaringan neural network dengan metode gradient descent. Pengklasifikasian hasil dari pembelajaran menggunakan softmax classifier. Data yang digunakan bersumber dari portal of National Center for Biotechnology Information. Jumlah dataset yang digunakan sebanyak 1065 sampel dari 8 kategori kelas untuk beberapa penyakit kanker dan non kanker. Dengan ini diperoleh hasil akurasi tertinggi 97,3 % untuk training dan 92,6 % untuk testing. Paralelisasi dari algoritma ini dapat bekerja dengan baik, dimana efesiensi terhadap waktu komputasi lebih cepat dengan speed up sekitar 13,03 terhadap komputasi sekuensial. Tentunya ini menjadi momentum untuk mengembangkan algoritma neural network lainnya dengan teknik paralelisasi. Kata Kunci : Deep Learning, SSAE, Parallel Computing, High Performance Computing, Cancer Classification, gene expression Nowadays, research in bioinformatics can be one of the popular researches for the medical professional researcher. One of them is the classification using data gene expression. Deep learning has become an interesting research in bioinformatics fields. Many kinds of research about cancer classification are appointed using deep learning. Classification using gene expression dataset is useful in the medical profession. Because it can classify diseases using gene only. This research raised the classification gene expression cancer using deep neural network with stacked sparse autoencoder and autoencoder as an extraction method. In addition, sparse autoencoder is also used as a represented of neural network learning. Fine tuning is used as weight and bias optimization for neural network with gradient descent method. Classification of the learning result using the softmax classifier. This research, the data is sourced from the portal of National Center for Biotechnology Information. With this obtained, the highest accuracy of 97.3% for training and 92,6 % for testing. Parallelization for this algorithm work quite well, this shows to the efficiency of the computation time is faster with speed up 000% for sequential computation. Of course, this research becomes the best moment for other neural network algorithm development with parallelism technique. Keyword: Deep Learning, SSAE, Parallel Computing, High Performance Computing, Cancer Classification, gene expression
Analisis Implementasi Algoritma Mapreduce K-means Clustering Pada Hadoop Aditya Alifinsyah; Fitriyani Fitriyani
eProceedings of Engineering Vol 4, No 3 (2017): Desember, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Clustering merupakan sebuah teknik yang banyak digunakan untuk pendistribusian dan pengolahan data. Tujuan dari klustering itu sendiri adalah untuk menemukan struktur dasar dari sebuah data dan mengelompokkannya menjadi sekumpulan data yang mempunyai nilai untuk dapat dipelajari dan dianalisis lebih lanjut. Sebuah teknik pengelompokan dan pendistribusian data yang banyak digunakan saat ini adalah K-Means Clustering. K-Means Clustering banyak digunakan karena kemudahan dalam pengaplikasiannya serta memberikan hasil klustering yang cukup baik. Ditengah era Big Data yang semakin berkembang seperti saat ini, penggunaan teknik dan analisis data yang masih bersifat tradisional ataupun serial mungkin tidak akan efisien lagi dalam pengolahan data yang jumlah dan ukurannya sangat besar. Maka dari itu penggunaan sebuah hardware ataupun system seperti Hadoop akan sangat membantu dalam proses klustering data yang sangat besar tersebut. Hadoop dapat digunakan secara efisien untuk pengolahan data dalam jumlah besar dikarenakan Hadoop memiliki sebuah algoritma pemrosesan data sendiri yang disebut MapReduce. MapReduce adalah sebuah algoritma yang dapat digunakan untuk mengatasi ukuran dan jumlah data yang besar dengan melakukan pendistribusian dan pengolahan data secara bersamaan. Pada penelitian ini akan dianalisis bagaimana implementasi penggunaan MapReduce pada algoritma K-Means Clustering dengan menggunakan sebuah Single Node Hadoop yang akan dibandingkan dengan pemrosesan algoritma K-Means Clustering secara sekuensial dengan melihat waktu komputasinya. Kata kunci: Hadoop , MapReduce, K-Means, Mapreduce K-Means