Claim Missing Document
Check
Articles

Found 3 Documents
Search

Use of Sulfuric Acid-Impregnated Biochar Catalyst in Making of Biodiesel From Waste Cooking Oil Via Leaching Method Sofyan, Muhammad Ihsan; Mailani, Putri Julpa; Setyawati, Avi Waras; Sulistia, Susi; Suciati, Fuzi; Hauli, Latifah; Putri, Reza Audina; Ndruru, Sun Theo C. L.; Mawarni, Rista Siti; Meliana, Yenny; Nurhayati, Nurhayati; Joelianingsih, Joelianingsih
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20113

Abstract

The biodiesel synthesis of waste cooking oil (WCO) over a impregnated biochar catalyst was systematically studied. This research aimed to prepare Biochar-based material that comes from coconut coir, activate it, and apply it as a catalyst to the esterification reaction of high-FFA waste cooking oil. Activation of the catalyst was done by impregnation H2SO4 solution in Biochar. The obtained catalyst was characterized by FTIR, XRF, XRD, surface area analyzer, and SEM-EDS. The esterification process was conducted by varying the catalyst weight (5, 7, and 10 wt%) and the reaction temperature (55 and 60 °C). The obtained liquid yields were characterized by GC-MS. The study found that the esterification process worked best with 10 wt% catalysts, a 1:76 mole ratio of oil to alcohol, and a reaction temperature of 60 °C. The waste cooking oil was successfully converted into biodiesel, reaching 84.50% of yield and 77.30% of purity (methyl ester content). Meanwhile, testing using national biodiesel standards with parameter limits of density, viscosity, iodine number, and acid number shows results that meet the requirements. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
A Green and Sustainable Approach for Converting Laboratory Latex Glove Waste into Liquid Fuel via Microwave-assisted Pyrolysis Wangsa, Wangsa; Saviola, Aldino Javier; Hauli, Latifah; Trisunaryanti, Wega; Chandra, Patrik; Fitria, Riska Astin; Mahayuwati, Puspa Nindro; Wijaya, Karna
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20429

Abstract

The extensive use of chemical laboratories for experimental and research activities has resulted in the substantial accumulation of latex glove waste, a widely used form of personal protective equipment (PPE). This study presents a novel and sustainable approach for converting laboratory latex glove waste into liquid fuel using microwave-assisted pyrolysis (MAP), which aligns with the principles of green chemistry. Under optimal conditions, including a microwave power of 800 W and an irradiation time of 30 min, the process achieved a liquid product yield of 52.58 wt%, with 41.86 wt% consisting of gasoline-range hydrocarbons (C₅–C₁₂). The primary compound identified in the liquid product was D-limonene (C₁₀H₁₆), a valuable monocyclic terpene. Compared to conventional pyrolysis conducted in a semi-batch reactor, the MAP process exhibited superior performance in terms of liquid yield, gasoline-range hydrocarbon content, total hydrocarbon composition, and calorific value. This innovative waste-to-fuel conversion method demonstrates the strong potential of MAP as an efficient and environmentally responsible strategy for waste valorization and resource recovery. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
NaHCO₃-Assisted Synthesis of Ni-Promoted Sulfated Mesoporous Silica for the Hydrocracking of Used Cooking Oil into Biogasoline Wijaya, Karna; Vebryana, Marini Fairuz; Prasetyo, Niko; Saviola, Aldino Javier; Saputri, Wahyu Dita; Amin, Amalia Kurnia; Hauli, Latifah; Gea, Saharman
Bulletin of Chemical Reaction Engineering & Catalysis 2026: BCREC Volume 21 Issue 1 Year 2026 (April 2026)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20531

Abstract

Biofuel production from biomass sources remains a key area of research, aimed at reducing reliance on fossil fuels and promoting environmental sustainability. This study investigates the conversion of used cooking oil (UCO) into biogasoline via catalytic hydrocracking, employing sulfated mesoporous silica dispersed with nickel as the catalyst. Mesoporous silica was synthesized using tetraethyl orthosilicate (TEOS) and NaHCO₃ as the template, followed by a hydrothermal method to introduce sulfate groups and nickel metal. Among the synthesized catalysts, SMS-2 exhibited the highest acidity across varying sulfuric acid concentrations, while 1 Ni/SMS-2 demonstrated superior acidity compared to other nickel loadings. The SiO₂, SMS-2, and 1 Ni/SMS-2 catalysts were evaluated for UCO hydrocracking in a semi-batch double-furnace reactor operated at an optimum temperature of 550 °C for 2 h, with a hydrogen flow rate of 20 mL min⁻¹ under atmospheric pressure. Modifying mesoporous silica with sulfuric acid and nickel significantly enhanced its catalytic performance, with the 1 Ni/SMS-2 catalyst achieving the highest liquid product yield (66.10%) and gasoline fraction (35.47%) at an optimum catalyst-to-feed ratio of 1:100 (w/w). Notably, the resulting biogasoline exhibited a calorific value comparable to commercial gasoline and was free of aromatic hydrocarbons, indicating the potential for cleaner combustion. This study provides valuable insights into the effectiveness of mesoporous silica-based catalysts, highlighting their acid site modulation capabilities for efficiently transforming waste into high-value fuels. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).