Claim Missing Document
Check
Articles

Found 1 Documents
Search

Real-Time Optimal Switching Angle Scheme for a Cascaded H-Bridge Inverter using Bonobo Optimizer Taha, Taha A.; Wahab, Noor Izzri Abdul; Hassan, Mohd Khair; Zaynal, Hussein I.; Taha, Faris Hassan; Hashim, Abdulghafor Mohammed
Journal of Robotics and Control (JRC) Vol 5, No 4 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i4.21701

Abstract

This study demonstrates a novel method for using the Bonobo Optimizer (BO) to selective harmonic elimination in a cascaded H-Bridge Multilevel Inverter (CHB-MLI) running on solar power. The primary objective is to calculate, in real time, the optimal switching angles for eliminating low-order harmonics while maintaining a constant output voltage despite variations in the input voltage. To prove that the BO algorithm works, tests were done on a three-phase, seven-level CHB-MLI that compared it to other evolutionary algorithms like the genetic algorithm (GA) and particle Swarm optimization (PSO). An adaptive BO-Artificial neural network (BO-ANN) based system was developed to compute real-time switching angles and applied to a 7-level CHB-MLI. The results demonstrate that the BO algorithm is the most accurate and fastest evolutionary algorithm for calculating optimal switching angles. This study illustrates the BO algorithm's effective utilization in real-time harmonic elimination applications in CHB-MLI.