Claim Missing Document
Check
Articles

Found 3 Documents
Search

Real-Time Optimal Switching Angle Scheme for a Cascaded H-Bridge Inverter using Bonobo Optimizer Taha, Taha A.; Wahab, Noor Izzri Abdul; Hassan, Mohd Khair; Zaynal, Hussein I.; Taha, Faris Hassan; Hashim, Abdulghafor Mohammed
Journal of Robotics and Control (JRC) Vol 5, No 4 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i4.21701

Abstract

This study demonstrates a novel method for using the Bonobo Optimizer (BO) to selective harmonic elimination in a cascaded H-Bridge Multilevel Inverter (CHB-MLI) running on solar power. The primary objective is to calculate, in real time, the optimal switching angles for eliminating low-order harmonics while maintaining a constant output voltage despite variations in the input voltage. To prove that the BO algorithm works, tests were done on a three-phase, seven-level CHB-MLI that compared it to other evolutionary algorithms like the genetic algorithm (GA) and particle Swarm optimization (PSO). An adaptive BO-Artificial neural network (BO-ANN) based system was developed to compute real-time switching angles and applied to a 7-level CHB-MLI. The results demonstrate that the BO algorithm is the most accurate and fastest evolutionary algorithm for calculating optimal switching angles. This study illustrates the BO algorithm's effective utilization in real-time harmonic elimination applications in CHB-MLI.
Definite time over-current protection on transmission line using MATLAB/Simulink Taha, Taha A.; Zaynal, Hussein I.; T. Hussain, Abadal-Salam; Desa, Hazry; Taha, Faris Hassan
Bulletin of Electrical Engineering and Informatics Vol 13, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i2.5301

Abstract

This paper has investigated the application of the definite time over-current (DTOC) which reacts to protect the breaker from damage during the occurrence of over-current in the transmission lines. After a distance relay, this kind of over-current relay is utilized as backup protection. The overcurrent relay will provide a signal after a predetermined amount of time delay, and the breaker will trip if the distance relay does not detect a line failure. As a result, this over-current relay functions with a time delay that is just slightly longer than the combined working times of the distance relay and the breaker. This DTOC is tested for various types of faults which are 3- phase fault occurring at load 1, 3-phase fault occurring at load 2, a 3-phase fault occurring before primary protection, and the behaviour of voltage and current with a failed primary protection. All the results will be obtained using the MATLAB/Simulink software package.
Optimization of Harmonic Elimination in PV-Fed Asymmetric Multilevel Inverters Using Evolutionary Algorithms Almalaisi, Taha Abdulsalam; Abdul Wahab, Noor Izzri; Zaynal, Hussein I.; Hassan, Mohd Khair; Majdi, Hasan S.; Radhi, Ahmed Dheyaa; Solke, Nitin; Sekhar, Ravi
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1785

Abstract

Modern power electronics depend heavily on Multilevel Inverters (MLIs) to drive high-power systems operating in renewable energy systems electric vehicles along with industrial motor drives. MLIs create AC signals of high quality by joining multiple DC voltage sources which leads to minimal harmonic distortion outputs. The Cascaded H-Bridge MLI (CHB-MLI) stands out as a first choice among different topologies of MLI for photovoltaic (PV) applications because it includes modular features with fault tolerance capabilities and excellent multi-DC source integration. To achieve effective operation MLIs need optimized control strategies that reduce harmonics while maintaining highest performance. Using SHE-PWM technology provides an effective technique for harmonic frequency reduction which allows the improvement of waveform integrity. Technical restrictions make the solution of SHE-PWM nonlinear equations exceptionally challenging to implement. The resolution of complex non-linear equations requires implementation of GA combined with PSO and BO for optimal switching angle determination. The research investigates an 11-level asymmetric CHB-MLI using five solar panels where SHE-PWM switching angles are optimized through GA, PSO and BO applications. Simulation tests validate that the implemented algorithms succeed in minimizing Total Harmonic Distortion (THD) and removing fundamental harmonic disturbances. The evaluation demonstrates distinct capabilities of each optimization approach between accuracy rates and computational speed performance. These optimization methods yield practical advantages which boost the performance of multi-level inverters. The researchers who follow should study actual hardware deployments together with combined control approaches to enhance power electronic applications.