Claim Missing Document
Check
Articles

Found 3 Documents
Search

Shear strength comparison of single lap and joggle lap adhesive joints in carbon fiber composites manufactured via vacuum-assisted resin infusion Pratama, Mikhael Gilang Pribadi Putra; Abdurohman, Kosim; Pratomo, Rezky Agung; Hidayat, Ryan; Ramadhan, Redha Akbar; Aritonang, Rian Suari; Nurtiasto, Taufiq Satrio; Ardiansyah, Riki; Nugroho, Afid; Nuranto, Awang Rahmadi; Wandono, Fajar Ari; Targani, Dudi; Ula, Nur Mufidatul
Jurnal Polimesin Vol 22, No 5 (2024): October
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v22i5.5437

Abstract

The extensive utilization of composite materials has spurred the advancement of diverse joining techniques suitable for components constructed from such materials. This study focuses on the examination of two specific types of joints: single lap and joggle lap joints. The specimens utilized were composed of unidirectional carbon fiber composite combined with vinyl ester resin, manufactured via the vacuum-assisted resin infusion method. Vinyl ester adhesives were employed in the bonding process, with the joint surfaces undergoing sanding treatment prior to testing. Mechanical testing was conducted on the specimens according to ASTM D5868 standard, employing a constant crosshead speed until failure occurred. The test results reveal that the shear strength of single lap joints surpasses that of joggle lap joints. Within the single lap joint configuration, a mixed failure mode comprising both adhesive and cohesive failure is observed. Conversely, in joggle lap joints, substrate delamination is prevalent, suggesting the predominance of peel stress during loading.
A Comparison of Vacuum Infusion, Vacuum Bagging, and Hand Lay-Up Process on The Compressive and Shear Properties of GFRP Materials Abdurohman, Kosim; Pratomo, Rezky Agung; Hidayat, Ryan; Ramadhan, Redha Akbar; Nurtiasto, Taufiq Satrio; Ardiansyah, Riki; P.P.P., Mikhael Gilang
Indonesian Journal of Aerospace Vol. 21 No. 1 (2023): Indonesian Journal of Aerospace
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/ijoa.2023.286

Abstract

Fiber-reinforced plastics are widely used in aerospace, marine, military, automotive, wind turbine, sports, and civil engineering applications. GFRP is a common material used in engineering applications such as for UAV structural material. Several techniques that can be used in the composite structure manufacturing process are HLU, VB, and, VARI. This paper studies the influence of the three manufacturing processes on the compressive and shear properties of GFRP composites. This study uses e-glass fiber as reinforcement material and a clear epoxy polymer called lycal as matrix material. The composites were manufactured by using HLU, VB, and VARI processes. The specimen dimensions, compressive, and shear tests are following ASTM standards. The microstructural characteristics were observed using a scanning electron microscope. The compressive strength of VARI composite is higher than HLU and VB composites up to 71% and 53%, respectively. The shear strength of the VARI composite is higher than HLU and VB composites up to 71% and 53%, respectively.
Investigation of the Mechanical Properties of Vinyl ester Carbon Composites Through Immersion in Seawater and Freshwater Using the VARI (Vacuum Assisted Resin Infusion) Method Muzayadah, Nurul Lailatul; Nurtiasto, Taufiq Satrio; Abdurrahman, Kosim; Nugroho, Afid; Wandono, Fajar Ari; Ula, Nur Mufidatul; P, Rezky Agung; Ramadhan , Redha Akbar; Hendrawan, Rozi
Indonesian Journal of Aerospace Vol. 20 No. 1 (2022): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2022.v20.a3579

Abstract

The carbon-vinyl ester composites have made for the development of the base material for Amphibious floats. The properties of this composite have strength, lighter weight and resistant to corrosion. This study was aimed to report the effect of two different water immersion treatment namely seawater and freshwater on the mechanical properties of composite made from fiber twill and vinyl ester resin using the vacuum assisted resin infusion (VARI) method. Experiments were carried out on tensile, compressive, and shear tests. The specimens were immersed in seawater and freshwater for ten days. The results have shown that Ultimate Tensile Strength of the composite with seawater immersion declined 1.27% compare with the composite without immersion treatment, while the composite in freshwater got greater 3.56%. The decrement of compressive and shear strength was more significant than tensile strength. The compressive strength declined 17.89% and 16.7% for freshwater and seawater treatment, respectively. The shear strength decreased 27.87 % and 25.77% for freshwater and seawater treatment, respectively