Claim Missing Document
Check
Articles

Found 4 Documents
Search

PENGETAHUAN PERAWAT TENTANG PENERAPAN PELAKSANAAN PENCEGAHAN INSIDEN PADA PASIEN RESIKO JATUH Febriani, Nelly; Maulina, Ayu
Jurnal Keperawatan Widya Gantari Indonesia Vol 2, No 1 (2015): Jurnal Keperawatan Widya Gantari Indonesia
Publisher : Fakultas Ilmu Kesehatan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52020/jkwgi.v2i1.851

Abstract

Salah satu dari enam sasaran keselamatan pasien adalah pencegahan pasien jatuh. Pelaksanaan pencegahan insiden pada pasien resiko jatuh sangat berhubungan erat dengan pengetahuan dan keterampilan perawat. Penelitian ini bertujuan menganalisis hubungan tingkat pengetahuan perawat dengan penerapan pelaksanaan pencegahan insiden pada pasien resiko jatuh. Penelitian ini menggunakan metode Deskriptif Kuantitatif dengan pendekatan cross sectional pada 52 perawat pelaksana, hasil analisis bivariat dengan uji chi square menunjukkan bahwa ada hubungan yang signifikan antara pengetahuan dengan penerapan pelaksanaan pencegahan pasien resiko jatuh (P= 0,001). Kejadian jatuh merupakan kejadian yang dapat dicegah, karena itu sebagai ujung tombak dalam pelayanan kesehatan sangat penting bagi perawat untuk meningkatkan pengetahuan, keterampilan, dan mematuhi pelaksanaan pencegahan pasien jatuh sesuai dengan prosedur yang sudah ada. Faktor yang paling berpengaruh pada pencegahan pasien jatuh adalah standar operasional prosedur sebagai acuan yang tepat untuk menerapkan keselamatan pasien dengan baik.
Breast Cancer Diagnosis Based on a Hybrid Genetic Algorithm and Neural Network Architecture Charisma, Rifqi Alfinnur; Maulina, Ayu
Engineering, MAthematics and Computer Science Journal (EMACS) Vol. 7 No. 2 (2025): EMACS
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/emacsjournal.v7i2.13409

Abstract

Breast cancer is one of the diseases with a high prevalence and is a leading cause of death among women. Early detection is crucial in improving patient survival rates. However, a major challenge in diagnosis using machine learning methods is the high dimensionality of the data, which can lead to overfitting and reduced interpretability of the model. This study proposes a new approach to improve breast cancer prediction accuracy by using a combination of Genetic Algorithm + Neural Network (GA + NN). The dataset used is the Breast Cancer Wisconsin (Diagnostic) Data Set, consisting of 569 samples with 32 numerical features that describe the characteristics of tumor cells. The experimental results show that the GA + MLP method achieved the highest accuracy of 99.42%, outperforming the benchmark model using PCA and logistic regression with an accuracy of 97.37%. This approach demonstrates that GA-based feature selection can improve prediction accuracy while reducing model complexity, making it more efficient for medical applications.
Gender Classification Using Keystroke Dynamics: Enhancing Performance with Feature Selection and Random Forest Maulina, Ayu; Charisma, Rifqi Alfinnur
Engineering, MAthematics and Computer Science Journal (EMACS) Vol. 7 No. 3 (2025): EMACS
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/emacsjournal.v7i3.13445

Abstract

The purpose of this study is to improve gender categorization by examining the usage of keyboard dynamics, with enhanced model performance through data standardization and appropriate feature selection. Features including gender, age, handedness, language, education, and metrics measuring typing behavior like mean_latency, std_latency, and frequency are all included in the dataset. Correlation analysis served as the foundation for the feature selection procedure, which is essential for effective model training, and data normalization was performed to guarantee consistency among the characteristics that were chosen. Because of its stability and capacity to handle complicated data, the Random Forest classifier was selected. The findings demonstrate that the Random Forest model achieved an accuracy of 95% and an F1-score of 95% when using all features, and 82% accuracy with an F1-score of 82.5% when using only the selected features. The results emphasize how important it is to choose the appropriate characteristics and standardize the data in order to increase predictive accuracy. By showcasing keystroke dynamics' capacity for gender categorization, this study advances the area and creates opportunities for further research in user experience improvement, digital service customization, and online behavioral analysis. Overall, the study emphasizes the importance of feature engineering, normalization, and model tuning for achieving accurate and reliable classification outcomes.
EFEKTIVITAS BANTUAN LANGSUNG TUNAI DANA DESA TERHADAP KONDISI EKONOMI MASYARAKAT PENERIMA BANTUAN DI DESA MASBAGIK UTARA BARU KECAMATAN MASBAGIK KABUPATEN LOMBOK TIMUR Maulina, Ayu; St. Maryam; Baiq Ismiwati
Journal of Economics and Business Vol 10 No 2 (2024): Ekonobis, September 2024
Publisher : Fakultas Ekonomi dan Bisnis Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/ekonobis.v10i2.187

Abstract

Penelitian ini bertujuan untuk mengetahui efektifitas pemberian Bantuan Langsung Tunai Dana Desa dalam membantu kondisi ekonomi masyarakat di Desa Masbagik Utara Baru. Jenis penelitian yang digunakan yaitu deskriptif kuantitatif. Populasi dalam penelitian ini adalah masyarakat penerima bantuan langsung tunai dana desa yang ada di Desa Masbagik Utara Baru dan diambil sampel sebanyak70 orang. Instrumen penelitian menggunakan kuesioner yang kemudian hasilnya dianalisis dengan menggunakan uji chi-square. Hasil dari penelitian ini menunjukkan bahwa nilai signifikansi (0,010) < 0,050 sehingga H0 ditolak. Maka efektivitas pemanfaatan bantuan langsung tunai dana desa berpengaruh terhadap kondisi ekonomi masyarakat di Desa Masbagik Utara Baru.