Djasmayena, Selvia
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pemilihan Supplier Obat yang Tepat Menggunakan Metode Multi Attribut Utility Theory Djasmayena, Selvia; Yunus, Yuhandri; Putra, Rezi Elsya
Jurnal Informasi dan Teknologi 2019, Vol. 1, No. 4
Publisher : SEULANGA SYSTEM PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/jidt.v1i4.27

Abstract

Drug suppliers are those who sell and distribute drugs to pharmacies or sections that carry out pharmaceutical activities. Selection of the right supplier can support the operational activities of the pharmacy. Pharmacists must know the right criteria in choosing a supplier. Criteria determined by pharmacies not all suppliers can fulfill it. Overcoming this decision support system is very necessary in the selection of suppliers. Multi-Attribute Utility Theory is a ranking method that helps in supporting supplier selection decisions at Pekanbaru Assyafni Pharmacy. Supplier selection uses 15 sample supplier data and 5 criterion data used as a basis for supplier selection. Such as drug production, delivery time, quality stability, service response, and guarantee. The results of the study get a high degree of accuracy that is 86.67% of the right suppliers and in accordance with the realization of test data. So this research is very important in choosing the right supplier.
Metode Simple Multi Attribute Rating Technique dalam Keputusan Pemilihan Dosen Berprestasi yang Tepat Putra, Rezi Elsya; Djasmayena, Selvia
Jurnal Informasi dan Teknologi 2020, Vol. 2, No. 1
Publisher : SEULANGA SYSTEM PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/jidt.v2i1.29

Abstract

Each lecturer is required to carry out the tridarma of higher education, a career to become a lecturer must be professional in accordance with his knowledge and expertise. Almost every year state or private tertiary institutions, give an award to lecturers who excel one of the benchmarks is from the tri darma performance of higher education. At present in determining the right lecturer with good achievements there are still many weaknesses of one of the criteria used. Then the research has the aim to determine the outstanding lecturers by using the right criteria effectively. The method used is the Simple Multi Attribute Rating Technique (SMART) method using Sekolah Tinggi Ilmu Komputer (STIKOM) Muhammadiyah Batam’s lecturer data. The results of this study set the right criteria, so get a very high level of accuracy which is 79%. So this research becomes the right indicator in determining the outstanding lecturers.
DEVELOPMENT OF A TECHNOLOGY-BASED INTERACTIVE FOR AGRICULTURAL INFORMATION DISSEMINATION IN THE SIDAPDAP SIMANOSOR VILLAGE FARMERS' GROUP Lubis, Romia; Djasmayena, Selvia; Sari, Septriana; Rivatunisa, Cyntia; Dirul Adha, Muhammad Reyan
JURNAL TEKNISI Vol 5, No 1 (2025): February 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/teknisi.v5i1.2789

Abstract

Abstract: Sidapdap Simanosor Village Farmers Group faces challenges in accessing and managing agricultural information efficiently. Limited resources and the absence of a web-based platform hinder the distribution of information quickly and accurately. This study aims to develop a technology-based agricultural forum site to improve the accessibility of information for farmer groups. The method used is the Waterfall software development model, which includes needs analysis, design, implementation, testing, and maintenance. The results of the study indicate that the agricultural forum website can function well and provide convenience for farmer group members in accessing information, sharing experiences, and increasing collaboration between farmers. The implementation of this information technology has been proven to increase the efficiency of the agricultural information system, support sustainable agricultural practices, and encourage the growth of the agricultural sector in the area.Keywords: farmer groups, agricultural information systems, agricultural websites. Abstract: Kelompok Tani Desa Sidapdap Simanosor menghadapi tantangan dalam mengakses dan mengelola informasi pertanian secara efisien. Keterbatasan sumber daya dan tidak adanya platform berbasis web menghambat distribusi informasi yang cepat dan akurat. Penelitian ini bertujuan untuk mengembangkan situs forum pertanian berbasis teknologi guna meningkatkan aksesibilitas informasi bagi kelompok tani. Metode yang digunakan adalah model pengembangan perangkat lunak Waterfall, yang meliputi analisis kebutuhan, perancangan, implementasi, pengujian, dan pemeliharaan. Hasil penelitian menunjukkan bahwa situs web forum pertanian dapat berfungsi dengan baik dan memberikan kemudahan bagi anggota kelompok tani dalam mengakses informasi, berbagi pengalaman, serta meningkatkan kolaborasi antarpetani. Implementasi teknologi informasi ini terbukti meningkatkan efisiensi sistem informasi pertanian, mendukung praktik pertanian berkelanjutan, serta mendorong pertumbuhan sektor pertanian di daerah tersebut.Keywords: kelompok tani, sistem informasi pertanian, situs web pertanian.
Klasifikasi Jenis Jerawat Berdasarkan Gambar Menggunakan Algoritma CNN (Convolutional Neural Network) Dewi, Sri; Ramadhani, Fanny; Djasmayena, Selvia
Hello World Jurnal Ilmu Komputer Vol. 3 No. 2 (2024): Edisi Juli
Publisher : Ilmu Bersama Center

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56211/helloworld.v3i2.518

Abstract

Tujuan penelitian ini adalah untuk meningkatkan ketepatan dalam mengidentifikasi jenis-jenis jerawat dengan memanfaatkan teknik klasifikasi menggunakan citra dan Convolutional Neural Networks (CNN). Pemilihan CNN sebagai metode didasarkan pada kemampuannya dalam mengekstrak fitur-fitur hierarki dari gambar, memungkinkan pengenalan pola yang kompleks dari setiap jenis jerawat. Penggunaan Model CNN dalam penelitian ini disesuaikan dengan efisiensi untuk mengklasifikasi dengan penyesuaian khusus demi konteks identifikasi jerawat. Tingkat akurasi mencapai 88%, yang dievaluasi dengan menggunakan confusion matrix dan classification report. Penelitian ini memberikan kontribusi yang penting dalam pengembangan teknik identifikasi jerawat dan mempertimbangkan variasi kondisi guna meningkatkan ketepatan klasifikasi.