Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Teknik Informatika C.I.T. Medicom

A Unified Hybrid AHP, Utility, TOPSIS Decision Model for Enhancing Ranking Reliability in Complex Multi-Criteria Problems Sihotang, Jonhariono; Batubara, Juliana
Jurnal Teknik Informatika C.I.T Medicom Vol 17 No 1 (2025): March: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study proposes a unified mathematical framework that integrates the Analytic Hierarchy Process (AHP), the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and Utility Theory to enhance multi-criteria decision-making (MCDM) in complex environments. While AHP provides a structured mechanism for deriving criterion weights, TOPSIS offers an effective geometric ranking approach, and Utility Theory captures nonlinear preferences and risk attitudes. However, these methods often operate independently, resulting in inconsistent rankings and incomplete representation of decision-maker behavior. The proposed framework bridges these gaps by combining AHP-derived weights, utility-transformed criterion values, and TOPSIS proximity measures into an integrated decision function. A numerical case study illustrates the full application of the model, including weight calculation, utility transformation, ideal-solution analysis, and composite scoring. Results show that the unified model produces more stable and discriminative rankings than pure AHP, pure TOPSIS, or pure Utility Theory. Sensitivity and robustness analyses further demonstrate that the integrated approach maintains ranking consistency under variations in weights, normalization methods, and utility parameters. Comparative validation using Spearman correlation confirms strong agreement with established methods while improving resilience to uncertainty. Overall, this research contributes a comprehensive and theoretically grounded MCDM framework that better reflects human judgment, strengthens ranking reliability, and is adaptable to diverse decision contexts. The unified model offers a powerful tool for practitioners and researchers seeking more accurate and robust decision support in multi-criteria environments.
A Dynamic Decision-Making Model for Regional Governance Based on Adaptive Preference Learning Sihotang, Jonhariono; Batubara, Juliana
Jurnal Teknik Informatika C.I.T Medicom Vol 17 No 3 (2025): July: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research develops a dynamic decision-making model for regional governance based on adaptive preference learning to address the limitations of traditional static policy frameworks. The study integrates decision theory, reinforcement learning, Bayesian preference modeling, and multi-criteria decision-making (MCDM) into a unified system capable of capturing evolving stakeholder preferences and responding to rapidly changing socio-economic conditions. The model consists of four core components data input layer, preference learning engine, policy decision module, and real-time feedback system which collectively enable continuous updating of decision parameters and ongoing evaluation of policy outcomes. Using a mixed-method approach that combines stakeholder surveys, historical governance data, performance indicators, and computational simulations, the study demonstrates that the adaptive model significantly improves decision accuracy, responsiveness, and alignment with citizen needs. The system’s dynamic feedback loops allow policies to be refined in real time, enhancing predictive capability and reducing the risks associated with rigid or outdated policy assumptions. Results show that the model outperforms traditional governance approaches in terms of decision efficiency, data-driven fairness, and the ability to anticipate emerging issues. Although challenges remain such as data sparsity, computational complexity, infrastructure limitations, and potential resistance from policymakers the findings highlight the model’s practical value for modern regional governance. The research contributes theoretically by advancing the application of adaptive learning in public policy decision-making and practically by offering a framework that supports faster, smarter, and more citizen-centric governance. Overall, the study underscores the potential of adaptive preference learning to transform regional decision-making in increasingly complex and uncertain environments.
A Foundational Model for Data-Driven Decision Systems Using Probabilistic Preference Structures Sihotang, Jonhariono; Batubara, J
Jurnal Teknik Informatika C.I.T Medicom Vol 17 No 4 (2025): September: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research proposes a foundational model for data-driven decision systems based on probabilistic preference structures, addressing the limitations of traditional deterministic and utility-based approaches. The model integrates probability theory, Bayesian inference, and decision theory to represent preferences as flexible probability distributions capable of capturing uncertainty, partial orderings, and multi-attribute trade-offs. A set of novel algorithms is introduced for learning and estimating latent probabilistic preferences from noisy, incomplete, and heterogeneous data sources. These learned preference structures are embedded within an optimization framework that combines Bayesian updating with Markov decision processes, enabling the system to generate optimal decisions under uncertainty. Experimental evaluations conducted across synthetic and real-world datasets demonstrate significant improvements in accuracy, robustness, stability, and decision quality compared to existing preference modeling methods. The unified framework also enhances explainability by quantifying uncertainty and providing interpretable probabilistic outputs. The research makes theoretical contributions by establishing a mathematical ontology for probabilistic preferences, methodological contributions through the development of scalable inference and decision algorithms, and practical contributions by enabling reliable decision-making in environments characterized by inconsistent or probabilistic data. Overall, the results validate the proposed framework as a comprehensive and flexible foundation for next-generation intelligent decision systems, offering improved adaptability, reliability, and transparency in complex real-world applications.