Junoh, Ahmad Kadri
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hybrid deep learning for estimation of state-of-health in lithium-ion batteries Cahyani, Denis Eka; Gumilar, Langlang; Afandi, Arif Nur; Wibawa, Aji Prasetya; Junoh, Ahmad Kadri
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp995-1006

Abstract

Lithium-ion (li-ion) batteries have a high energy density and a long cycle life. Lithium-ion batteries have a finite lifespan, and their energy storage capacity diminishes with use. In order to properly plan battery maintenance, the state of health (SoH) of lithium-ion batteries is crucial. This study aims to combine two deep learning techniques (hybrid deep learning), namely convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM), for SoH estimation in li-ion batteries. This study contrasts hybrid deep learning methods to single deep learning models so that the most suitable model for accurately measuring the SoH in lithium-ion batteries can be determined. In comparison to other methodologies, CNN-BiLSTM yields the best results. The CNN-BiLSTM algorithm yields RMSE, mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) in the following order: 0.00916, 0.000084, 0.0048, and 0.00603. This indicates that CNN-BiLSTM, as a hybrid deep learning model, is able to calculate the approximate capacity of the lithium-ion battery more accurately than other methods.