Claim Missing Document
Check
Articles

Found 3 Documents
Search

DELAYED CRACKING FAILURE OF A FREEZER BARREL Albatros, Thomas; Ardy, Husaini
Jurnal Rekayasa Mesin Vol. 14 No. 3 (2023)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v14i3.1629

Abstract

Freezers were used to produce ice cream, pumped by a screw pump into a barrel. The barrel’s outer surface was operated with NH3 gas at -40 oC and a 12–13 bar pressure. After being in service for 3 years, the unit experienced cracking. The barrel material was Nickel 200, with a base metal average grain size of 48μm. The weld metal has a larger average grain size of 800μm and contains many gas pockets inside and along the grain boundaries, which coalesce one after another, forming micro-cracks that result in intergranular cracking. The weld metal failed in a brittle manner; this embrittlement was attributed to hydrogen atoms ingressing into the weld metal during welding. Atomic hydrogen will diffuse, forming hydrogen gas. Since atomic diffusion takes place over a long period, the occurrence of cracks is well-known as delayed cracking.
The Effect of AlTi5B1 and ALTAB Ti80 with a Combination of AlSr15 and Mg Additions on Strength and Ductility of A356 Aluminum Alloys Mostavan, Afghany; Setiawan, Asep Ridwan; Basuki, Arif; Ardy, Husaini
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2023.714

Abstract

The current study aims to analyze microstructural changes affecting the A356 aluminum alloy, a hypoeutectic Al-Si-Mg alloy. This aluminum alloy is well-known for its strength, resistance to corrosion, lightweight, and heat treatability. The main objective of this research is to improve the strength and ductility of A356 alloys by using a synergistic strategy that includes AlTi5B1 and ALTAB Ti80 for microstructural alteration in combination with AlSr15 and Mg. The experimental results show that including all constituents in the as-cast condition enhances the ultimate tensile strength and elongation. Furthermore, in the heat-treated state, the addition of ALTAB Ti80 effectively maintains tensile strength (σuts=233.7 MPa), yield strength (σy=180.3 MPa), and elongation (e=5.8%). Additionally, when combined with Mg, the tensile strength and yield strength exhibit further improvement (σuts=253 MPa and σy=215.7 MPa); however, elongation is significantly reduced (e=2.7%)
Porous Calcium Carbonate-Poly-2-Acrylamido-2-Methylpropanesulfonic Acid Microspheres Embedded with Silver-Based Nanoparticles as Potential Antibacterial Carriers for Bone Infections Rini, Novi Dwi Widya; Asmoro, Adinda; Rachmawati, Systi Adi; Ardy, Husaini; Aimon, Akfiny Hasdi; Kishimura, Akihiro; Katayama, Yoshiki; wibowo, arie
Makara Journal of Science
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Implant-associated infections (IAIs) are a significant complication following orthopedic surgeries and are mainly caused by Staphylococcus aureus. In this study, microspheres based on hybrid calcium carbonate–poly-2-acrylamido-2-methylpropane sulfonic acid (CaCO3-PAMPS) embedded with silver-based nanoparticles (AgNPs) were developed as potential antibacterial drug carriers for IAIs. AgNPs were prepared via a green synthesis approach, which employed Indonesian wild honey as a reducing and capping agent. PAMPS concentrations (0.025%, 0.050%, and 0.075% w/v) and silver ion (Ag+) concentrations in solution (0%, 2.5%, and 4% w/v) were varied. Scanning electron microscopy images showed that samples with 0.050% w/v PAMPS and 2.5% w/v Ag+ exhibited remarkable stability against recrystallization and aggregation. The sample exhibited more homogeneous, free-standing vaterite particles. Moreover, the particles obtained displayed a porous structure, promising for loading active ingredients. In addition, the X-ray diffraction results confirmed that the Ag-based particles embedded were not only AgNPs but were also predominantly composed of AgCl. AgNPs and AgCl in this sample demonstrated antibacterial activity against Staphylococcus aureus (zone of inhibition of 7.2 ± 0.6 mm). The development of stable, homogeneous microspheres with antibacterial properties and drug-loading potential offers a promising solution for the prevention and treatment of IAIs, addressing a critical challenge in orthopedic surgery.