Claim Missing Document
Check
Articles

Found 3 Documents
Search

TEKNOLOGI ENERGI BARU TERBARUKAN DAN KONSERVASI ENERGI: PEMBERDAYAAN LAHAN DENGAN SISTEM KETAHANAN PANGAN TERPADU TERBARUKAN “SAPTA” Faza Rifàti, Eva; Utami, Erna; Sahrin, Alfin; Sutanto, Agus; Sunardi, Sunardi
Madiun Spoor : Jurnal Pengabdian Masyarakat Vol 4 No 1 (2024): April 2024
Publisher : Politeknik Perkeretaapian Indonesia Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37367/jpm.v4i1.329

Abstract

Salah satu sumber energi baru terbarukan terbaik, aman lingkungan dengan biaya operasional cukup tinggi, yaitu Pembangkit Listrik Tenaga Surya. Dikenal intensif dalam menghasilkan energi listrik. Nanosolar, dapat menekan biaya produksi dari $3 per watt sampai 30 sen per watt selama operasional sel Power sheet tersebut. Panel surya dapat mengoptimalkan transfer sinar matahari yang diubah menjadi listrik dan harus ditempatkan secara kontak langsung dengan cahaya matahari tanpa terhalangi oleh benda atau obyek lainnya. Aplikasi panel surya ini diterapkan melalui teknologi SAPTA, merupakan suatu sistem yang menggabungkan pertanian dan peternakan dengan tujuan adalah untuk menggunakan lahan secara optimal. Rancangannya adalah menggabungkan unsur kolam ikan, kandang ayam dan pertanian hidroponik yang dibuat secara bertingkat dengan bantuan panel surya sebagai sumber energinya. Dengan menciptakan suatu lingkungan yang optimal diharapkan melalui SAPTA dapat memperkecil penggunaan lahan dan memperbesar omset dari pelaku usaha. SAPTA dilengkapi dengan sinar UV yang akan mempercepat pertumbuhan tanaman. Air hidroponik berasal dari kolam ikan yang banyak mengandung unsur organik sebagai pupuk tanaman. Selain itu, tanaman juga menyerap amonia yang berlebih dari kolam ikan. Ikan juga memakan kotoran ayam dan memperkecil limbah hasil peternakan. Hal tersebut membangun suatu lingkungan integrasi yang saling memenuhi kebutuhan satu sama lain.
Buck boost converter control to accelerate cooling in hydrogen system coolers Adi, Wasis Waskito; Akhiriyanto, Novan; Alson, Adi; Gunawan, Yohanes; Sahrin, Alfin; Utami, Erna
Jurnal Polimesin Vol 22, No 6 (2024): December
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v22i6.5610

Abstract

The electrolysis process involves decomposing water (H₂O) into hydrogen gas (H₂) and oxygen gas (O₂), requiring substantial electrical power. This study utilized an electrolyzer with a maximum capacity of 7V and 40A, demanding 280 watts of power. Therefore, it requires a voltage of less than 7V but a high current of up to 40A, as the critical parameter for the electrolyzer in producing hydrogen is the electric current flowing through it. A buck-boost converter was implemented to adjust the voltage to operate a Thermoelectric Cooler (TEC) for temperature regulation. Over time, as the electrolyzer operates and consumes a high current, there is an increase in its temperature. The system successfully maintained the electrolyzer temperature below 35°C by adjusting the output voltage between 10-14V, with an input range of 21.62-21.65V. The cooling system achieved a temperature reduction of 1.06°C, demonstrating its effectiveness in stabilizing the electrolyzer’s performance, thus optimizing hydrogen production efficiency.
Electrical Power Prediction of Polycrystalline Solar Panels based on LSTM Model with environmental influence Sahrin, Alfin; Utami, Erna; Shoffiana, Nur; Abadi, Imam
JAICT Vol. 11 No. 02 (2025): JAICT
Publisher : Politeknik Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Solar energy is one of the most promising renewable energy sources that can support the sustainable energy transition. However, the electrical power produced by photovoltaic (PV) panels is greatly influenced by environmental conditions such as irradiation, temperature, humidity, and wind speed, making them volatile and difficult to predict. This study aims to develop a prediction model based on Long Short-Term Memory (LSTM) to estimate the power output of polycrystalline panels. Environmental data is collected in real-time, processed through the normalization stage, and then used as input in several model variants, namely pure LSTM, CNN-LSTM, LSTM-Autoencoder, and GWO-LSTM with metaheuristic optimization. Evaluation was conducted using R², RMSE, and MAPE metrics. The results showed that the pure LSTM model provided good accuracy (R² = 0.95; MAPE = 6.2%), while CNN-LSTM and LSTM-AE improved performance with R² reaching 0.97 and 0.96, respectively. The best model is GWO-LSTM, with R² = 0.98, RMSE = 0.31 kW, and MAPE = 4.3%. These findings prove that metaheuristic optimization in LSTM can increase the reliability of PV power prediction and support a more efficient energy management system.