Junaidi, J.
Unknown Affiliation

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

KEMAMPUAN BERPIKIR SISWA DALAM MENYELESAIKAN SOAL HOTS PADA MATERI POLA DAN BARISAN BILANGAN Junaidi, J.; Roza, Yenita; Maimunah, M.
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol 4, No 2: July 2020
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (337.345 KB) | DOI: 10.36312/e-saintika.v4i2.220

Abstract

Pada abad 21 diperlukan keterampilan berpikir tingkat tinggi (HOTs) yang mencakup kemampuan berpikir kritis dan berpikir kreatif. Tujuan penelitian ini adalah untuk mendeskripsikan kemampuan interpretasi, analisis, inferensi, kelancaran dan orisinalitas siswa dalam menyelesaikan soal pola dan barisan bilangan. Metode yang digunakan dalam penelitian adalah deskriptif kualitatif dan subjek sebanyak 40 siswa yang terdiri 19 siswa SMPN 5 Bantan dan 21 Siswa MTS Al-Huda. Instrumen yang digunakan berupa (1) tes tertulis yang berorientasikan HOTs dan (2) pedoman wawancara.  Hasil tes menunjukkan rata-rata HOTs siswa SMPN 5 Bantan (49,34) dan MTS Al-Huda (45,12) berkategori cukup.  Skor tiap indikator HOTs untuk siswa SMPN 5 Bantan diketahui bahwa interpretasi= 48,68, analisis= 40,13, inferensi= 64,47, kelancaran= 52,68 dan orisinalitas= 40,79 sedangkan untuk siswa MTs Al-Huda adalah interpretasi= 61,18, analisis= 40,79, inferensi= 53,57, kelancaran= 38,16 dan orisinalitas= 45,24. Berdasarkan hasil wawancara juga diketahui bahwa rendahnya HOTs siswa dikarenakan siswa tidak terbiasa dalam menyelesaikan soal HOTs serta tidak tersedianya soal-soal HOTs yang secara khusus mengukur HOTs di sekolah, sehingga diharapkan adanya penelitian lebih lanjut mengenai soal-soal HOTs.Students' Thinking Ability in Solving HOTs Questions on Material Patterns and Rows of NumbersAbstractIn the 21st century, higher order thinking skills (HOTs) are needed which include critical thinking skills and creative thinking. The purpose of this study is to describe the students? ability of interpretation, analysis, inference, fluency and originality in solving questions about patterns and rows of numbers. The method used in this research is descriptive qualitative and as many as 40 students consisting of 19 students of SMPN 5 Bantan and 21 students of Al-Huda MTS. The instrument used in the form of (1) written tests oriented to HOTs and (2) interview guidelines. The test results showed the average level of SMPN 5 Bantan students? HOTs (49.34) and MTS Al-Huda (45.12) was categorized as sufficient. The score of each indicator of HOTs for SMPN 5 Bantan students is known that interpretation= 48.68, analysis= 40.13, inference= 64.47, fluency= 52.68 and originality= 40.79 while for MTs Al-Huda students are interpretation= 61.18, analysis= 40.79, inference= 53.57, fluency= 38.16 and originality= 45.24. Based on the interview results it is also known that the low level of students? HOTs is because students are not accustomed to solving HOTs questions and the unavailability of HOTs questions that specifically measure HOTs in schools, so it is hoped that further research on questions of HOTs.
BUKTI YANG MEMBUKTIKAN DAN BUKTI YANG MENJELASKAN DALAM KELAS MATEMATIKA Hamdani, Deni; Junaidi, J.; Novitasari, Dwi; Salsabila, Nilza Humaira; Tyaningsih, Ratna Yulis
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol 4, No 2: July 2020
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (902.323 KB) | DOI: 10.36312/e-saintika.v4i2.253

Abstract

Tujuan penelitian ini adalah mendeskripsikan secara komprehensif perbedaan bukti yang membuktikan dan bukti yang menjelaskan berdasarkan pertimbangan implikasi kedua bukti tersebut sebagai dasar konstruksi penalaran dan bukti dalam matematika. Kajian dijalani dengan kegiatan menguraikan perbedaan spesifik antara keduanya serta memberikan contoh kasus kedua bukti, dan memberikan justifikasi atas pentingnya pengenalan kedua bukti dalam kelas matematika. Kedua bukti digambarkan dengan permasalahan konsep barisan bilangan ganjil. Bukti yang membuktikan hanya menunjukkan dengan menggunakan induksi matematis, sementara bukti yang menjelaskan menunjukkan dengan bukti Gauss, representasi geometrik bangun titik, dan garis zig-zag. Perbedaan antara keduanya tampak pada pemberian alasan yang berasal dari bukti itu sendiri. Hasil kajian mengindikasikan bahwa peran bukti dalam kelas matematika pada tingkat perguruan tinggi adalah membuktikan/meyakinkan, pada tingkat menengah atas adalah membuktikan dan menjelaskan, dan pada tingkat sekolah menengah pertama dan dasar peran utamanya adalah menjelaskan. Akibatnya bukti matematis tidak hanya membuktikan/menyakinkan, melainkan juga menjelaskan. Karenanya penting mempertimbangkan implikasi bukti dalam kurikulum matematika di sekolah, serta perlunya menyajikan bab materi kepada mahasiswa pendidikan matematika tidak hanya bukti yang membuktikan, melainkan juga bukti yang menjelaskan.Proofs that Prove and Proofs that Explain in Mathematics ClassroomAbstractThe purpose of this study was to comprehensively describe the differences of the proofs that prove and proofs that explain based on the consideration of the implications of the two proofs as the basis for the construction reasoning and proofs in mathematics. The study was undertaken with the activity of describing the specific differences between the two and providing examples of cases of both proofs; and provide justification for the importance of introducing both proofs in mathematics classrooms. Both proofs are illustrated by the problem of the odd number sequence concept. Proofs that prove is only shown using mathematical induction, while proofs that explain shows with Gaussian proof, a geometric representation of point shape, and zigzag line. The difference between the two appears to be the reasoning that comes from the proof itself. The results of the study indicate that the role of proof in mathematics classes at the tertiary level is proving/convincing, at the senior secondary level it is proving and explaining, and at the junior and elementary school level its main role is explaining. As a result, mathematical proof does not only prove/convince, but also explain. It is therefore important to consider the implications of proof in the mathematics curriculum in schools, as well as the need to present chapter materials to mathematics education students not only proofs that prove but also proof that explain.
Kemampuan Berpikir Siswa dalam Menyelesaikan Soal HOTs pada Materi Pola dan Barisan Bilangan Junaidi, J.; Roza, Yenita; Maimunah, M.
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol. 4 No. 2: July 2020
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/e-saintika.v4i2.220

Abstract

Pada abad 21 diperlukan keterampilan berpikir tingkat tinggi (HOTs) yang mencakup kemampuan berpikir kritis dan berpikir kreatif. Tujuan penelitian ini adalah untuk mendeskripsikan kemampuan interpretasi, analisis, inferensi, kelancaran dan orisinalitas siswa dalam menyelesaikan soal pola dan barisan bilangan. Metode yang digunakan dalam penelitian adalah deskriptif kualitatif dan subjek sebanyak 40 siswa yang terdiri 19 siswa SMPN 5 Bantan dan 21 Siswa MTS Al-Huda. Instrumen yang digunakan berupa (1) tes tertulis yang berorientasikan HOTs dan (2) pedoman wawancara.  Hasil tes menunjukkan rata-rata HOTs siswa SMPN 5 Bantan (49,34) dan MTS Al-Huda (45,12) berkategori cukup.  Skor tiap indikator HOTs untuk siswa SMPN 5 Bantan diketahui bahwa interpretasi= 48,68, analisis= 40,13, inferensi= 64,47, kelancaran= 52,68 dan orisinalitas= 40,79 sedangkan untuk siswa MTs Al-Huda adalah interpretasi= 61,18, analisis= 40,79, inferensi= 53,57, kelancaran= 38,16 dan orisinalitas= 45,24. Berdasarkan hasil wawancara juga diketahui bahwa rendahnya HOTs siswa dikarenakan siswa tidak terbiasa dalam menyelesaikan soal HOTs serta tidak tersedianya soal-soal HOTs yang secara khusus mengukur HOTs di sekolah, sehingga diharapkan adanya penelitian lebih lanjut mengenai soal-soal HOTs.Students' Thinking Ability in Solving HOTs Questions on Material Patterns and Rows of NumbersAbstractIn the 21st century, higher order thinking skills (HOTs) are needed which include critical thinking skills and creative thinking. The purpose of this study is to describe the students’ ability of interpretation, analysis, inference, fluency and originality in solving questions about patterns and rows of numbers. The method used in this research is descriptive qualitative and as many as 40 students consisting of 19 students of SMPN 5 Bantan and 21 students of Al-Huda MTS. The instrument used in the form of (1) written tests oriented to HOTs and (2) interview guidelines. The test results showed the average level of SMPN 5 Bantan students’ HOTs (49.34) and MTS Al-Huda (45.12) was categorized as sufficient. The score of each indicator of HOTs for SMPN 5 Bantan students is known that interpretation= 48.68, analysis= 40.13, inference= 64.47, fluency= 52.68 and originality= 40.79 while for MTs Al-Huda students are interpretation= 61.18, analysis= 40.79, inference= 53.57, fluency= 38.16 and originality= 45.24. Based on the interview results it is also known that the low level of students’ HOTs is because students are not accustomed to solving HOTs questions and the unavailability of HOTs questions that specifically measure HOTs in schools, so it is hoped that further research on questions of HOTs.
Bukti yang Membuktikan dan Bukti yang Menjelaskan dalam Kelas Matematika Hamdani, Deni; Junaidi, J.; Novitasari, Dwi; Salsabila, Nilza Humaira; Tyaningsih, Ratna Yulis
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol. 4 No. 2: July 2020
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/e-saintika.v4i2.253

Abstract

Tujuan penelitian ini adalah mendeskripsikan secara komprehensif perbedaan bukti yang membuktikan dan bukti yang menjelaskan berdasarkan pertimbangan implikasi kedua bukti tersebut sebagai dasar konstruksi penalaran dan bukti dalam matematika. Kajian dijalani dengan kegiatan menguraikan perbedaan spesifik antara keduanya serta memberikan contoh kasus kedua bukti, dan memberikan justifikasi atas pentingnya pengenalan kedua bukti dalam kelas matematika. Kedua bukti digambarkan dengan permasalahan konsep barisan bilangan ganjil. Bukti yang membuktikan hanya menunjukkan dengan menggunakan induksi matematis, sementara bukti yang menjelaskan menunjukkan dengan bukti Gauss, representasi geometrik bangun titik, dan garis zig-zag. Perbedaan antara keduanya tampak pada pemberian alasan yang berasal dari bukti itu sendiri. Hasil kajian mengindikasikan bahwa peran bukti dalam kelas matematika pada tingkat perguruan tinggi adalah membuktikan/meyakinkan, pada tingkat menengah atas adalah membuktikan dan menjelaskan, dan pada tingkat sekolah menengah pertama dan dasar peran utamanya adalah menjelaskan. Akibatnya bukti matematis tidak hanya membuktikan/menyakinkan, melainkan juga menjelaskan. Karenanya penting mempertimbangkan implikasi bukti dalam kurikulum matematika di sekolah, serta perlunya menyajikan bab materi kepada mahasiswa pendidikan matematika tidak hanya bukti yang membuktikan, melainkan juga bukti yang menjelaskan.Proofs that Prove and Proofs that Explain in Mathematics ClassroomAbstractThe purpose of this study was to comprehensively describe the differences of the proofs that prove and proofs that explain based on the consideration of the implications of the two proofs as the basis for the construction reasoning and proofs in mathematics. The study was undertaken with the activity of describing the specific differences between the two and providing examples of cases of both proofs; and provide justification for the importance of introducing both proofs in mathematics classrooms. Both proofs are illustrated by the problem of the odd number sequence concept. Proofs that prove is only shown using mathematical induction, while proofs that explain shows with Gaussian proof, a geometric representation of point shape, and zigzag line. The difference between the two appears to be the reasoning that comes from the proof itself. The results of the study indicate that the role of proof in mathematics classes at the tertiary level is proving/convincing, at the senior secondary level it is proving and explaining, and at the junior and elementary school level its main role is explaining. As a result, mathematical proof does not only prove/convince, but also explain. It is therefore important to consider the implications of proof in the mathematics curriculum in schools, as well as the need to present chapter materials to mathematics education students not only proofs that prove but also proof that explain.
Pengelompokkan kabupaten/kota di Pulau Sulawesi berdasarkan indikator indeks khusus penanganan stunting menggunakan Gaussian mixture model Rahman, Rezki; Junaidi, J.; Gamayanti, Nurul Fiskia
Majalah Ilmiah Matematika dan Statistika Vol. 23 No. 2 (2023): Majalah Ilmiah Matematika dan Statistika
Publisher : Jurusan Matematika FMIPA Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/mims.v23i2.36389

Abstract

Stunting or is a condition of growth failure in children under five years old (toddlers) who are malnourished. Children are called stunted if their height is below minus two standard deviations. The Special Index for Handling Stunting (IKPS) is one of the main indicators used as a measure of the achievement of handling the reduction in stunting rates. In implementing the 2024 development goals, namely setting a national stunting target that can decrease to 14%, it is necessary to identify based on the characteristics of a special index for handling stunting in each region. Method of Gaussian Mixture Model is a grouping with models that function to group a certain amount of data into a Gaussian distribution with mean and variance parameters. The main idea of model-based grouping is that object grouping is done using probabilities. This study was conducted with the aim of obtaining the results of grouping regencies/cities on Sulawesi Island based on the Special Index Indicator for Handling Stunting. The results of the study obtained different volume and shape models, coordinate axis orientation (VVI) with 4 optimum cluster. Cluster 1 with a low stunting handling index contains 24 districts/cities, cluster 2 with a medium stunting handling index contains 21 districts/cities, cluster 3 with a high stunting handling index contains 13 districts/cities, cluster 4 with a very high stunting handling index contains 23 districts/cities.Keywords: Four optimum cluster, low, medium, high and very highMSC2020: 62A09