El Hakim, Lukman
Unknown Affiliation

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS DALAM PEMECAHAN MASALAH MATEMATIKA: PERSPEKTIF FILSAFAT DAN ADVERSITY QUOTIENT Siswanto, Eko; Aziz, Tian Abdul; El Hakim, Lukman
JP2M (Jurnal Pendidikan dan Pembelajaran Matematika) Vol 10, No 1 (2024)
Publisher : Universitas Bhinneka PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jp2m.v10i1.5210

Abstract

This study aims to explain critical thinking skills in solving mathematics problems using a philosophical perspective, especially from Progressive Education Theory and Adversity Quotient. The research method used is a literature study by utilising primary data in the form of books, online journals, and seminars that discuss critical thinking skills, problem solving, John Dewey's Progressive Education Theory, and Adversity Quotient. The results of data analysis show that critical thinking skills have a central role in dealing with mathematical problems. John Dewey's Progressive Education Theory can be a guide for teachers in choosing learning models that encourage students' active involvement in the learning process in the classroom. Meanwhile, Adversity Quotient has a positive influence on critical thinking ability.
Penerapan Model Problem Based Learning (PBL) Berbasis Daring Untuk Meningkatkan Kemampuan Berpikir Kritis Peserta Didik Kelas XI MIPA 3 SMAN 77 Jakarta Pada Materi Program Linear dan Matriks Amini, Ingriani Indah; Rahayu, Wardani; El Hakim, Lukman
JURNAL RISET PEMBELAJARAN MATEMATIKA SEKOLAH Vol 6 No 1 (2022): Jurnal Riset Pembelajaran Matematika Sekolah
Publisher : Program Studi Pendidikan Matematika FMIPA Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/jrpms.061.09

Abstract

Penelitian ini bertujuan untuk menerapkan model PBL berbasis daring untuk meningkatkan kemampuan berpikir kritis peserta didik kelas XI MIPA 3 SMA Negeri 77 Jakarta materi program linear dan matriks. Penelitian ini merupakan Penelitian Tindakan Kelas (PTK) yang dilaksanakan dalam tiga siklus dengan subjek penelitian sebanyak enam orang yang mewakili peserta didik dengan kemampuan tinggi, sedang dan rendah berdasarkan hasil tes kemampuan awal. Hasil penelitian menunjukan bahwa pembelajaran matematika pada materi program linear dan matriks dengan menerapkan model PBL berbasis daring dapat meningkatkan kemampuan berpikir kritis peserta didik melalui proses diskusi dalam menyelesaian masalah yang disajikan dalam lembar kerja. Peningkatan kemampuan berpikir kritis juga dapat ditunjukan dengan meningkatnya nilai rata-rata yang diperoleh pada tes kemampuan awal sebesar 23, rata-rata tes akhir siklus I sebesar 76, rata-rata tes akhir siklus II sebesar 78,4, dan rata-rata tes akhir siklus III sebesar 87,03. Selain itu, persentase peserta didik yang memperoleh nilai pada kategori minimal baik sejak pelaksanaan tes kemampuan awal berpikir kritis sebesar 2,5%, tes akhir siklus I sebesar 72,5%, tes akhir siklus II sebesar 82,5%, dan tes akhir sikus III sebesar 90%.
Penerapan Model Visualization Auditory Kinesthetic (VAK) dengan teknik probing prompting untuk meningkatkan kemampuan pemahaman konsep matematis dan keaktifan belajar siswa SMP pada materi segiempat dan segitiga Indriani, Indriani; El Hakim, Lukman; Hidajat, Flavia Aurelia
Jurnal Kajian Pembelajaran Matematika Vol 7, No 1 (2023): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v7i12023p51-59

Abstract

This study aims to improve the ability to understanding mathematical concepts and student learning activities through the application of the Visualization Auditory Kinesthetic model with the Probing Prompting technique. This type of research is Classroom Action Research which consists of three cycles based on the Kemmis and McTaggart models. There were 6 students who were research subjects in this study representing students with high, medium and low. Data analysis techniques use the stages according to Miles and Huberman, including data reduction, data presentation and conclusions. The results showed that learning mathematics by applying the VAK model with the Probing Prompting technique could improve the ability to understand mathematical concepts and student learning activities. The increase in the ability to understanding mathematical concepts can be seen from the increase in the average score of the test results in each cycle with the average score in the first cycle is 50, the average score in the second cycle is 65, and the average score in the third cycle is 79. As for the score learning activity also increased starting from the average in the first cycle is 68, the average in the second cycle is 76, and the average in the second cycle is 77.
R RANCANGAN DESAIN PEMBELAJARAN SCIENCE, TECHNOLOGY, ENGGINEERING AND MATHEMATIC UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA : Rancangan Desain Pembelajaran Science, Technology, Enggineering And Mathematics untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis Siswa Widias, Neni; El Hakim, Lukman
Jurnal Riset Pendidikan Matematika Jakarta Vol. 7 No. 1 (2025): Jurnal Riset Pendidikan Matematika Jakarta Volume 7, Nomor 1, Tahun 2025
Publisher : Program Studi Pendidikan Matematika jenjang Magister, FMIPA, Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/jrpmj.v7i1.27486

Abstract

One of the mathematical abilities that must be mastered by students is the ability to solve mathematical problems. If students have good mathematical problem solving skills, students will not only memorize the concepts that have been taught but can also be applied in everyday life and other disciplines. So it is important for a student to improve his mathematical problem solving abilities. But in learning, the teacher often gives questions that are routine in nature which causes the students' mathematical problem solving ability to be low. When students are asked to work on non-routine questions, students find it difficult. Therefore, the authors designed a learning design that allows students to apply mathematical concepts to other disciplines and everyday life. The design of the learning design chosen by the author is to use the Science, Technology, Engineering, and Mathematics (STEM) learning approach which is expected to use the STEM approach to improve students' mathematical problem solving abilities
BAGAIMANA MAHASISWA MENGGUNAKAN PETA KARNAUGH DALAM MEMINIMASI FUNGSI BOOLEAN? Abdul Aziz, Tian; Makmuri, Makmuri; El Hakim, Lukman
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 14, No 3 (2025)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/ajpm.v14i3.9456

Abstract

Sejauh ini belum banyak penelitian pada topik minimisasi Fungsi Boolean. Penelitian studi kasus ini bertujuan untuk menganalisis performa mahasiswa dalam menggunakan peta Karnaugh dalam menyelesaikan permasalahan minimisasi fungsi Boolean. Sebanyak 42 mahasiswa dari program studi Pendidikan matematika di salah satu perguruan tinggi di Jakarta dipilih secara convenience sebagai partisipan dalam penelitian ini.  Pengumpulan data dilakukan dengan administrasi tes. Analisis artefak atau lembar jawaban partisipan dilakukan untuk melihat ketepatan jawaban, pembuatan diagram, dan proses pengelompokkan yang dibuat. Berdasarkan hasil analisis tersebut, hanya sekitar 26% partisipan yang dapat meminimisasi fungsi Boolean dengan tepat. Selain itu, ditemukan bahwa faktor pendukung dan penghambat keberhasilan partisipan dalam menyelesaikan permasalahan minimasi fungsi Boolean dengan menggunakan Karnaugh Map adalah bergantung pada ketepatan penyusunan diagram dan proses pengelompokkan. Penyusunan diagram yang tepat ternyata belum tentu mendukung proses pengelompokkan yang tepat, akan tetapi pengelompokkan yang tepat didasari diagram yang tepat. Pembelajaran pada topik ini perlu memperhatikan factor-faktor pendukung dan penghambat ini agar kesulitan mahasiswa dapat diminimalisir.
NEEDS ANALYSIS OF LEARNING DEVICES WITH RECIPROCAL TEACHING MODEL ASSISTED BY GEOGEBRA ON GEOMETRIC TRANSFORMATION MATERIAL El Hakim, Lukman; Cahyani, Adinda; Sovia, Anny
Pendas : Jurnal Ilmiah Pendidikan Dasar Vol. 9 No. 03 (2024): Volume 09 No. 03 September 2024
Publisher : Program Studi Pendidikan Guru Sekolah Dasar FKIP Universitas Pasundan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23969/jp.v9i3.18950

Abstract

The practice of learning mathematics students find it difficult to understand the material of geometry transformation. The success of students in learning geometry transformation is still low because teachers use conventional teaching and have not implemented learning innovations. Learning tools become one of the components that support the success of learning activities. This study aims to analyze the results of teacher interviews and student questionnaires to analyze the needs of learning devices with reciprocal teaching models assisted by GeoGebra on geometric transformation material. The research method used is descriptive qualitative. Respondents in this study were mathematics teachers and students at SMA Negeri 2 Jonggol with a total of 60 respondents in class XI. This research instrument uses interviews and needs questionnaires to students presented on the google form platform. Data analysis techniques by analyzing and describing mathematics teacher interview data and student questionnaire data are analyzed in detail. The results of this study are 1) schools use Merdeka Curriculum in mathematics learning activities, 2) the material that students have difficulty with is geometric transformation material, 3) teachers have never used the reciprocal teaching model in learning mathematics, 4) teaching materials used include PowerPoint, LKPD, modules, and school textbooks, 5) GeoGebra has been used for two-variable linear inequality material, but not yet for geometric transformation material. It can be concluded that students and teachers need learning tools using the reciprocal teaching model assisted by GeoGebra which is implemented in mathematics learning, especially geometric transformation material.