Claim Missing Document
Check
Articles

Found 3 Documents
Search

KARAKTERISASI ELEMEN IDEMPOTEN CENTRAL Patty, Henry W.M.; Persulessy, Elvinus R.; Matakupan, RUDY W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 5 No 1 (2011): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (873.104 KB) | DOI: 10.30598/barekengvol5iss1pp33-39

Abstract

Elemen idempoten e dalam suatu ring R dengan elemen satuan disebut idempotent central jika untuk sebarang rR berlaku er re . Selanjutnya dibentuk ring eRe yang merupakan subring dengan elemen satuan e. Dimotivasi dari struktur ring eRe akan diselidiki sifat-sifat dalam ring dan modul diantaranya, indecomposable, homomorfisma dan radikal Jacobson,dalam kaitannya dengan elemen idempotent central. Dalam tulisan ini akan dipelajari karakterisasi
APROKSIMASI DISTRIBUSI WAKTU HIDUP YANG AKAN DATANG Pentury, Thomas; Matakupan, Rudy W.; Sinay, Lexy J.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 5 No 1 (2011): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1016.405 KB) | DOI: 10.30598/barekengvol5iss1pp47-51

Abstract

This paper give an analitical technique to approximate future lifetime distributions. Approximations of the future lifetime distribution based on the shifted Jacobi polynomials, andit yielded the sequences of a exponentials combination. The results of approximations of the future lifetime distribution in this cases study based on Makeham’s Law. It is very accurate inthe case study.
KETAKSAMAAN INTEGRAL GRONWALL-BELLMAN UNTUK FUNGSI BERPANGKAT Rijoly, Monalisa E.; Wattimanela, Henry J.; Matakupan, Rudy W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 5 No 2 (2011): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (633.608 KB) | DOI: 10.30598/barekengvol5iss2pp15-24

Abstract

Integral inequality of Gronwall-Bellman is known as an integral inequality which consists of differential and integral forms. Integral inequality of Gronwall-Bellman involving several functions that some definite condition hold and integral values of these functions. In addition, the integral inequality of Gronwall-Bellman shows that if a function is bounded to a certain integral values then that function is also bounded for the other conditions, that is the exponential of integral. Furthermore, by adding some specific conditions the integral inequality of Gronwall-Bellman can be extended to the case of power functions.