Claim Missing Document
Check
Articles

Found 6 Documents
Search

KETAKSAMAAN INTEGRAL GRONWALL-BELLMAN UNTUK FUNGSI BERPANGKAT Rijoly, Monalisa E.; Wattimanela, Henry J.; Matakupan, Rudy W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 5 No 2 (2011): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (633.608 KB) | DOI: 10.30598/barekengvol5iss2pp15-24

Abstract

Integral inequality of Gronwall-Bellman is known as an integral inequality which consists of differential and integral forms. Integral inequality of Gronwall-Bellman involving several functions that some definite condition hold and integral values of these functions. In addition, the integral inequality of Gronwall-Bellman shows that if a function is bounded to a certain integral values then that function is also bounded for the other conditions, that is the exponential of integral. Furthermore, by adding some specific conditions the integral inequality of Gronwall-Bellman can be extended to the case of power functions.
BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN Ilwaru, Venn Y. I.; Wattimanela, Henry J.; Talakua, Mozart W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 6 No 1 (2012): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (387.956 KB) | DOI: 10.30598/barekengvol6iss1pp13-18

Abstract

Riemann Integral is integral concept using the sum of lower Riemann and upper Riemann. The sufficient condition for the function sequence which is R-integralable at a, b is thelimit function also R-integralable at a, b. If function sequence   n f convergence to f at a, b and n f R-integralable for every n, then the sufficient condition that function f alsoR-integralable at a, b is   n f uniform convergence to f at a, b. This research studies about sum convergence theorems in Riemann Integral.
ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA Marcus, Gresyea L.; Wattimanela, Henry J.; Lesnussa, Yopi A.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 6 No 1 (2012): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (860.54 KB) | DOI: 10.30598/barekengvol6iss1pp31-40

Abstract

The climate in Ambon, are influenced by sea climate and season climate, cause of this island arrounded by sea, it is make very high rainfall intensity. A very high collinearity between independent variables, make the estimate can not rely be ordinary least square method so it market with not real regretion coefficient and the collinearity. Collinearity can be detected by linier correlation coefficient between independent variables and also with VIF way. Regretion principal component analysis is used to remove collinearity and all of independent variable into model, this analysis is regretion analysis technique wher eare combinated with principal component analysis technique. The object of this analysis is to simplify the variable by overcast it dimension, we can do it removes the correlation between coefficient by transformation. Regresion can help to solve this case rainfall in Ambon on 2010. So the colinearity to independent variables can be overcome and then we can get the best regretion rutes.
SIFAT-SIFAT DASAR PERLUASAN INTEGRAL LEBESGUE Lesnussa, Yopi A.; Wattimanela, Henry J.; Talakua, Mozart W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 6 No 2 (2012): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (492.6 KB) | DOI: 10.30598/barekengvol6iss2pp37-44

Abstract

EL-Integral is extended of Lebesgue integral, 1 k b EL f d L f d . Lebesgue integral is defined with early arrange measure theory that famous with Lebesgue measure. A function f :a,b is said EL-integrable on a,b , if there exist series interval that no piled up   k I in a,b so that  ,   0 k  a b  I  ,   k f L I for every k and 1 IkA L f d finite. Value A is called value of EL Integral function f on a,b . Extended of Lebesgue integral (EL-Integral) is notated by :  kbE a k I EL f d f d L f d     .
ANALISIS PERBAIKAN KUALITAS GENTENG BETON DENGAN MENGGUNAKAN METODE TAGUCHI Kailey, Linanda; Wattimanela, Henry J.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 1 No 2 (2007): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (220.795 KB) | DOI: 10.30598/barekengvol1iss2pp36-39

Abstract

A concrete roof tile company wanted to improve the quality and reduce product defects or rework of products, but companies in the production of concrete roof tile products still fragile because of strong press tiles that are not in accordance with predetermined specifications.To overcome these problems, have made a study to identify factors that influence control of a strong press and concrete roof tiles to get the best settings in producing a product that is expected to perform design of experiments using Taguchi Method to factors that can be controlled by the Cement ( A), water (B), Fly Ash (C) and Dust Stone (D).Each factor had 3 levels of treatment and based on the total number of free degrees in this experiment the orthogonal matrix ( 13 )27 L 3 is used. Based on the results obtained so semenyang largest contribution to the average strength of concrete roof tile press, which is 18.642% of dust and rock that is a combination of 8.167% and the right to obtain a strong tap-concrete roof tiles desired .
ANALISIS ENTROPI DARI TRANSFORMASI MENGAWETKAN UKURAN DAN SIFAT-SIFATNYA Rahakbauw, Dorteus L.; Wattimanela, Henry J.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 8 No 1 (2014): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (289.986 KB) | DOI: 10.30598/barekengvol8iss1pp1-6

Abstract

Transformasi 1 2 T : X  X merupakantransformasiterinvers yang mengawetkan ukuran jika T mengawetkan ukuran, bijektif, and 1 T juga menawetkan ukuran. Transformasi yang mengawetkan ukuran merupakan pemetaan yang mengawetkan struktur antara ruang ukuran. Pada sisi lain, T : X  X merupakan transformasi yang mengawetkan ukuran dari ruang probabilitas X,B,m . Jika A adalah aljabar bagian berhingga  dari B maka     1 0 1 , , lim n i n i h T h T H T n   A A A disebut entropi dari T terhadap A . Jika T : X  X merupakan transformasi yang mengawetkan ukuran dari ruang probabilitas X,B,m maka hT   suphT,A  dimana suprimum diambil atas semua aljabar bagian berhingga A dari B disebut entropi dari T. Dalam penelitian ini akan ditunjukkan bahwa limit di atas selalu ada dan menjelaskan mengenai beberapa sifat dari hT,A  dan hT  .