Claim Missing Document
Check
Articles

Found 15 Documents
Search

Penerapan Metode Learning Vector Quantization (LVQ) untuk Mendeteksi Penyalahgunaan Narkoba Berny Pebo Tomasouw; Salmon Notje Aulele; Monalisa E. Rijoly
Contemporary Mathematics and Applications (ConMathA) Vol. 3 No. 1 (2021)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v3i1.26940

Abstract

Dalam penelitian ini, metode LVQ akan diterapkan untuk mendeteksi penyalahgunaan narkoba berdasarkan gejala-gejala yang dialami seseorang. Untuk mendapatkan tingkat akurasi terbaik, maka data pelatihan dan data pengujian dibagi ke dalam tiga skema pembagian data yakni 60/40, 70/30 dan 80/20. Setelah dilakukan proses pelatihan dan pengujian menggunakan metode LVQ dengan berbagai variasi nilai laju pembelajaran dan jumlah epoch, maka diperoleh tingkat akurasi terbaik sebesar 86.7 % pada skema pembagian data 70/30 dengan laju pembelajaran  = 0.001 dan  = 0.005.
Penyelesaian Numerik Persamaan Diferensial Orde Dua Dengan Metode Runge-Kutta Orde Empat Pada Rangkaian Listrik Seri LC Monalisa E Rijoly; Francis Yunito Rumlawang
Tensor: Pure and Applied Mathematics Journal Vol 1 No 1 (2020): Tensor : Pure And Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol1iss1pp7-14

Abstract

One alternative to solve second order differential equations by numerical methods, specificallynon-liner differential equations is the Runge-Kutta fourth order method. The Runge-Kutta fourth ordermethod is a numerical method that has high degree of precision and accuracy when compared to othernumerical methods. In this paper we will discuss the numerical solution of second order differentialequations on LC series circuit problem using the Runge-Kutta fourth order method. The numericalsolution generated by the computational calculation using the MATLAB program, the strong current andcharge are obtaind from t = 0 and t =0,5 second and different step size values
Perancangan Sistem Deteksi Plagiarisme Skripsi (Judul Dan Abstrak) Berbasis Matlab Menggunakan Algoritma Winnowing Monalisa E. Rijoly; Windy Pramudita; Berny Pebo Tomasouw; Zeth Arthur Leleury
Tensor: Pure and Applied Mathematics Journal Vol 2 No 2 (2021): Tensor : Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol2iss2pp67-76

Abstract

Plagiarism is an act of plagiarizing the work of others who will then acknowledge the work as one's own work without mentioning the source of the work. This research aims to create a plagiarism detection system using the winnowing algorithm in MATLAB to prevent plagiarism in the final project of the Mathematics Department students. In order to get the best k-gram value and window size that will be used in the system, a testing process is carried out between document I (100% data) and document II (80% data) by using variations in k-gram values ​​and window sizes. The test results show that the best k-gram ​​and window size are 12 and 4.
Optimization of Assignment Problems using Hungarian Method at PT. Sicepat Express Ambon Branch (Location: Java City Kec. Ambon Bay) Ardial Meik; Venn Yan Ishak Ilwaru; Monalisa E. Rijoly; Berny Pebo Tomasouw
Tensor: Pure and Applied Mathematics Journal Vol 3 No 1 (2022): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol3iss1pp23-32

Abstract

One of the special cases of problems in linear programming that is often faced by a company in allocating its employees according to their abilities is the assignment problem. The assignment problem can be solved using the Hungarian Method. In applying the Hungarian method, the number of employees assigned must be equal to the number of jobs to be completed. In this study, the Hugarian method was used to optimize the delivery time of goods from PT. SiCepat Express Ambon Branch – Java City. To solve the assignment problem at PT. SiCepat Express Ambon Branch – Java City, the required data includes employee names, destination locations, and delivery times. Before using the Hungarian method, the total delivery time of 7 employees at 10 destinations is 955 minutes. However, after using the Hungarian method, the total delivery time of 7 employees at 10 destination locations was 440 minutes. It can be seen that there are 515 minutes of time effisiency. We also Solved this assignment problem uses the QM For Windows Version 5.2 software and go the same amount of time, which is 440 minutes.
PENERAPAN METODE MILNE-SIMPSON PADA ESTIMASI PRODUKSI CENGKEH DI PROVINSI MALUKU Monalisa E. Rijoly; Francis Y. Rumlawang; Berny Pebo Tomasouw
JURNAL SAINTIKA UNPAM Vol 5, No 1 (2022)
Publisher : Program Studi Matematika FMIPA Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jsmu.v5i1.28690

Abstract

Model Verhulst merupakan model dalam bentuk persamaan diferensial nonlinier yang menggambarkan peningkatan atau pertumbuhan suatu populasi yang bersifat kontinu. Salah satu metode multi-step dari metode numerik dapat digunakan untuk menyelesaikan model Verhulst, yaitu metode Milne-Simpson. Model Verhulst diselesaikan terlebih dahulu menggunakan metode Runge-Kutta orde 4 untuk memperoleh empat nilai awal yang kemudian nilai awal tersebut akan digunakan dalam menentukan solusi numerik dengan menggunakan metode Milne-Simpson. Penelitian ini bertujuan untuk mengestimasi produksi cengkeh selama 10 tahun dengan menggunakan metode Milne-Simpson. Solusi numerik dari model Verhulst yang diperoleh dari model Verhulst  pada 2022 adalah 107.721 ton dengan step size h=1, kapasitas penampung untuk produksi cengkeh di provinsi Maluku sebesar K=150.000 ton dan laju produksi  sebesar k=0,05897. Pada tahun 2022 sampai 2027 produksi cengkeh mengalami kenaikan produksi, yang rata-rata kenaikannya sebesar 4,7%.
A Stage-structure Leslie-Gower Model with Linear Harvesting and Disease in Predator Beay, Lazarus Kalvein; Leleury, Zeth Arthur; Rijoly, Monalisa E.; Lesnussa, Yopi Andry; Wattimena, Abraham Zacaria; Rahakbauw, Dorteus Lodewyik
Jambura Journal of Biomathematics (JJBM) Volume 4, Issue 2: December 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjbm.v4i2.22047

Abstract

The growth dynamics of various species are affected by various aspects. Harvesting interventions and the spread of disease in species are two important aspects that affect population dynamics and it can be studied. In this work, we consider a stage-structure Leslie–Gower model with linear harvesting on the both prey and predator. Additionally, we also consider the infection aspect in the predator population. The population is divided into four subpopulations: immature prey, mature prey, susceptible predator, and infected predator. We analyze the existences and stabilities of feasible equilibrium points. Our results shown that the harvesting in prey and the disease in predator impacts the behavioral of system. The situation in the system is more complex due to disease in the predator population. Some numerical simulations are given to confirm our results.
Solusi Numerik Model SITA Menggunakan Metode Runge Kutta Fehlberg Untuk Memprediksi Penyebaran Penyakit HIV/AIDS Di Provinsi Maluku Serlaloy, Marshanda Nalurita; Rijoly, Monalisa E.; Leleury, Zeth Arthur
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 7 No. 2 (2024): Menjembatani Matematika dan Pendidikan Matematika menuju Pemanfaatan Berkelanju
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v7i2.4021

Abstract

This research aims to predict the spread of HIV/AIDS in Maluku Province using the Runge Kutta Fehlberg method. The mathematical model of the spread of HIV/AIDS disease is in the form of a system of differential equations that includes Susceptible (S) variable, namely individuals who are healthy but vulnerable to being infected with the HIV virus, Infected (I) variable namely individuals who are infected with the HIV virus, Treatment (T) variable namely individuals who receive antiretroviral therapy and AIDS (A) variable namely individuals who contract AIDS disease used as initial values. Values as parameter values are solved numerically using the Runge Kutta Fehlberg method performed as many as 10 iterations with an interval time of using data from Maluku Provincial Health Office and BPS-Statistics Indonesia from 2013 to 2022. Based on the data obtained, the average value of the data is used as the initial value where . The initial values and parameter values are substituted into the numerical solution and simulated using software Matlab as tools. The rate value of each class for the next 10 years is for the class rate of individuals susceptible to HIV infection (S) of 1.757.102 people, for the class rate of HIV-infected individuals (I) of 2482 people, for the class rate of individuals receiving antiretroviral treatment (ARV) (T) of 1516 people and for the class rate of individuals with AIDS (A) of 555 people. This means that the (S) and (T) populations will decrease over the next 10 years while the (I) and (A) populations will increase over the next 10 years.
Solusi Numerik Model Penyebaran Virus Covid-19 Dengan Vaksinasi Menggunakan Metode Runge-Kutta Fehlbrg Orde Lima Pada Provinsi Maluku Rijoly, Monalisa E.; Rumlawang, Francis Y.; Maurits, Stefalya
Tensor: Pure and Applied Mathematics Journal Vol 4 No 2 (2023): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol4iss2pp93-104

Abstract

COVID-19 is a new type of disease that has never been identified in humans before. The virus that causes COVID-19 is called Servere Acute Respiratory Syndrome Coronavirus-2 (Sars-Cov-2). The purpose of this study is to predict the spread of the COVID-19 virus by vaccination in Maluku Province in the next 20 months. The mathematical model used in this study is SEIRV with five sub-populations. Susceptible sub population (S), patient under surveillance (PDP)/Exposed sub population (E), Infected (I), Recovered (R), and Vaccinated (V) sub population as initial values S0 =190.295, E0=261, R0=172, and V0=7.693. Furthermore, numerical model simulations using the fifth order Runge-Kutta Fehlberg method over the next 20 months are for the susceptible sub population (S) of 693 people, for the Patient Under Monitoring sub population (PDP) (E) of 101 people, for the sub population infected (I) of 301 people, for the rate of recovery population (R) of 704 people and for the vaccinated sub population (V) of 16,951 so that it can be concluded that the sub population (V) has effectiveness because the susceptible sub population (S) decreases so that vaccination can be a solution to prevent the spread of the COVID-19 virus in Maluku Province within the next 20 months.
Solusi Numerik Model SITA Menggunakan Metode Runge Kutta Fehlberg Untuk Memprediksi Penyebaran Penyakit HIV/AIDS Di Provinsi Maluku Serlaloy, Marshanda Nalurita; Rijoly, Monalisa E.; Leleury, Zeth Arthur
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 7 No. 2 (2024): Menjembatani Matematika dan Pendidikan Matematika menuju Pemanfaatan Berkelanju
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v7i2.4021

Abstract

This research aims to predict the spread of HIV/AIDS in Maluku Province using the Runge Kutta Fehlberg method. The mathematical model of the spread of HIV/AIDS disease is in the form of a system of differential equations that includes Susceptible (S) variable, namely individuals who are healthy but vulnerable to being infected with the HIV virus, Infected (I) variable namely individuals who are infected with the HIV virus, Treatment (T) variable namely individuals who receive antiretroviral therapy and AIDS (A) variable namely individuals who contract AIDS disease used as initial values. Values as parameter values are solved numerically using the Runge Kutta Fehlberg method performed as many as 10 iterations with an interval time of using data from Maluku Provincial Health Office and BPS-Statistics Indonesia from 2013 to 2022. Based on the data obtained, the average value of the data is used as the initial value where . The initial values and parameter values are substituted into the numerical solution and simulated using software Matlab as tools. The rate value of each class for the next 10 years is for the class rate of individuals susceptible to HIV infection (S) of 1.757.102 people, for the class rate of HIV-infected individuals (I) of 2482 people, for the class rate of individuals receiving antiretroviral treatment (ARV) (T) of 1516 people and for the class rate of individuals with AIDS (A) of 555 people. This means that the (S) and (T) populations will decrease over the next 10 years while the (I) and (A) populations will increase over the next 10 years.
KETAKSAMAAN INTEGRAL GRONWALL-BELLMAN UNTUK FUNGSI BERPANGKAT Rijoly, Monalisa E.; Wattimanela, Henry J.; Matakupan, Rudy W.
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 5 No 2 (2011): BAREKENG : Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (633.608 KB) | DOI: 10.30598/barekengvol5iss2pp15-24

Abstract

Integral inequality of Gronwall-Bellman is known as an integral inequality which consists of differential and integral forms. Integral inequality of Gronwall-Bellman involving several functions that some definite condition hold and integral values of these functions. In addition, the integral inequality of Gronwall-Bellman shows that if a function is bounded to a certain integral values then that function is also bounded for the other conditions, that is the exponential of integral. Furthermore, by adding some specific conditions the integral inequality of Gronwall-Bellman can be extended to the case of power functions.