Claim Missing Document
Check
Articles

Found 5 Documents
Search

SISTEM INFORMASI PEMBELIAN OBAT BERBASIS WEB PADA APOTEK CANTIGI DENGAN METODE BERORIENTASI OBYEK Zuhro, Faridatus; Anubhakti, Dian; Putra, Bima Cahya
Proceeding SENDI_U 2021: SEMINAR NASIONAL MULTI DISIPLIN ILMU DAN CALL FOR PAPERS
Publisher : Proceeding SENDI_U

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Apotek Cantigi merupakan tempat usaha yang bergerak pada bidang farmasi dan menyediakan obat-obatan kimia serta produk-produk herbal. Proses pembelian obat ke supplier pada Apotek Cantigi saat ini tidak terstruktur dan terdokumentasi dengan baik dan benar sehingga, besar kemungkinan arsip dokumen terkait pembelian obat ke supplier terselip ataupun hilang . Maka dari itu, perlu adanya sebuah sistem informasi untuk meningkatan pelayanan lebih baik dan dapat memberikan informasi yang cepat, tepat dan akurat serta dapat dipertanggung jawabkan. Pada analisa dan perancangan sistem berjalan, penulis akan menggunakan metodologi berorientasi obyek untuk memecahkan permasalahan yang terjadi pada Apotek Cantigi. Metode-metode yang digunakan penulis yaitu dengan menggunakan use case diagram, class diagram, sequence diagram, activity diagram, component diagram dan deployment diagram. Framework yang digunakan dan diimplementasikan dalam sistem informasi ini menggunakan Laravel. Penyimpanan data yang di gunakan yaitu database MySQL. Hasil penelitian menggunakan Unified Modelling Leaguage sangat membantu dalam proses pembuatan suatu sistem informasi pembelian obat berbasis web pada Apotek Cantigi. Sehingga, penulis berharap dengan dibangunnya sistem informasi pembelian obat yang terkomputerisasi ini dapat membantu mengatasi masalah – masalah yang sering dialami dalam proses transaksi Apotek Cantigi.
Prediction of Graduation for Students at the ISB Atma Luhur Faculty of Information Technology Using the C4.5 Algorithm Putri, Ine Widyaningrum Mustama; Rusdah, Rusdah; Suryadi, Lis; Anubhakti, Dian
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 12, No 3 (2023): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v12i3.1731

Abstract

Higher Education is a level of education after secondary education which includes diploma programs, undergraduate programs, master programs, doctoral programs, professional programs, and specialist programs organized based on the culture of the Indonesian nation. Student graduation is one of the important factors to improve university accreditation. Students who graduate above 5 years and the number of students who drop out are important indicators in determining accreditation which then causes the difficulty of accrediting a college to rise. This research aims as an early warning for students who graduate on time and graduate late from the Faculty of Information Technology, Institute of Science and Business Atma Luhur using the C4.5 decision tree algorithm by implementing the Cross-Industry Standard Process for Data Mining (CRISP- DM) method. The initial data of this research amounted to 1,015 which was taken through a query in the database of the Atma Luhur Institute of Science and Business. However, the data that will be used becomes 694 after preprocessing due to the large number of record contents that do not have a graduation year, with a total of 641 graduates graduating on time and 53 graduates graduating late. Based on the application of the model using the C4.5 decision tree algorithm and the Confusion Matrix method, the accuracy is 93.94%, Recall is 98.59%, and Precision is 95.03%. So it can be concluded that the C4.5 decision tree algorithm is the most effective algorithm for predicting student graduation, because it has a high level of accuracy.
DETEKSI DINI GEJALA AWAL PENYAKIT DIABETES MENGGUNAKAN ALGORITMA RANDOM FOREST Mawarni, Ajeng Citra; Rusdah, Rusdah; Hin, Law Li; Anubhakti, Dian
IDEALIS : InDonEsiA journaL Information System Vol 6 No 2 (2023): Jurnal IDEALIS Juli 2023
Publisher : Universitas Budi Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36080/idealis.v6i2.3018

Abstract

Diabetes merupakan penyakit kronis yang disebabkan karena pancreas tidak dapat memproduksi insulin sesuai dengan kebutuhan tubuh atau kondisi ketika tubuh tidak dapat menggunakan insulin secara efektif. Pada tahun 2021 Indonesia memperoleh urutan ke-5 didunia dengan populasi penderita penyakit diabetes terbanyak dan terdapat lebih dari 1 orang diantara 10 orang dewasa yang menderita diabetes. Semakin meningkatnya penderita diabetes di Indonesia bahkan di dunia yang sebenarnya sudah positif diderita tetapi tidak menimbulkan komplikasi lebih lanjut hingga kematian. Hal ini disebabkan karena belum adanya model klasifikasi deteksi dini gejala awal diabetes. Maka pada penelitian ini perlu dilakukannya pembuatan model klasifikasi deteksi dini gejala awal penyakit diabetes dengan metode penelitian Cross Industry Standard Process for Data Mining (CRISP-DM) yaitu dengan melaksanakan riset jurnal. Penelitian ini menggunakan algoritma Random Forest. Data yang akan digunakan bersifat public yang didapatkan melalui website www.kaggle.com dengan total 520 record dataset yang terdiri dari 17 attribut, terdapat 320 dataset dengan positif diabetes dan 200 dataset dengan negative diabetes. Klasifikasi dilakukan dengan dengan komposisi data training dan data testing 90:10 menggunakan teknik stratified random sampling dengan number of trees 5, maximal depth 5, dan dilakukannya apply pruning. Diperoleh akurasi 90.38%, precision 100%, recall 84.38% dan niai AUC 1.00. Sehingga dapat disimpulkan bahwa model klasifikasi dengan algoritma Random Forest dapat bekerja sangat baik terhadap data deteksi dini gejala awal penyakit diabetes.
IMPLEMENTASI ELECTRONIC CUSTOMER RELATIONSHIP MANAGEMENT UNTUK MENINGKATKAN KEPUASAN DAN LAYANAN KEPADA PELANGGAN THANI COFFEE Setyawan, Ivan; Hin, Lauw Li; Anubhakti, Dian; Gata, Grace
IDEALIS : InDonEsiA journaL Information System Vol 7 No 1 (2024): Jurnal IDEALIS Januari 2024
Publisher : Universitas Budi Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36080/idealis.v7i1.3104

Abstract

Customer support and satisfaction are very important in running a Coffee shop business. Thani Coffee as a place to relax and enjoy Coffee if there is work or college assignments. Thani Coffee has issues, particularly the offerings in keeping relationships with clients, consisting of useless providers for customers when placing orders, in addition to facts about drink promos that are less powerful so that occasionally Thani Coffee workers neglect to provide statistics about drinks that may be on promo to customers, and a less powerful complaint and tips submission center so that Thani Coffee is difficult to improve services. Based on the current problems, this research uses a buyer relationship control (CRM) method approach where there is 1 CRM stage, namely Enhance. The method in this observation uses direct observation, interviews and also conducts documentation. The e-CRM device created using the Hypertext Preprocessor programming language and MySQL as its database. This system was created with the aim of providing service and pleasure to Thani Coffee customers, which has a variety of features for customers, drink promo features, ordering, reduction, complaints and instructions, drink reviews. The features that can be used by Thani Coffee are menu input, cut price, order data, customer data, sales report generation, user reports, criticism and review reports as well as providing facilities to change banners to assist beverage promo activities. The research conclusion is to facilitate the sale and recapitulation of Thani Coffee sales and also to compete with other Coffee Shops.
Implementasi Algoritma Backtracking Pada Permainan Sudoku Rahman, Fauzan Azima; Anubhakti, Dian
MEANS (Media Informasi Analisa dan Sistem) Volume 5 Nomor 1
Publisher : LPPM UNIKA Santo Thomas Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (769.154 KB) | DOI: 10.54367/means.v5i1.711

Abstract

Artificial intelligence is a field of computer science that is learning about computer devices that can be in the program using the machine in order to do commands from a programmer using certain instructions. One form of Artificial intelligence representation is a game or game. With the science of artificial intelligence then certain games will be able to be easily solved using computer assistance. One form of the game that can be inserted in an artificial intelligence game is Sudoku. The game is a form of numeric play where players are required to fill a blank box that is already available using a random number of numbers starting from 1 to 9. Many players are unable to complete this Sudoku game. This research uses Backtracking algorithms in solving sudoku puzzles. Research results in the form of applications capable of completing Sudoku puzzles