Claim Missing Document
Check
Articles

Found 1 Documents
Search

DETEKSI DINI GEJALA AWAL PENYAKIT DIABETES MENGGUNAKAN ALGORITMA RANDOM FOREST Mawarni, Ajeng Citra; Rusdah, Rusdah; Hin, Law Li; Anubhakti, Dian
IDEALIS : InDonEsiA journaL Information System Vol 6 No 2 (2023): Jurnal IDEALIS Juli 2023
Publisher : Universitas Budi Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36080/idealis.v6i2.3018

Abstract

Diabetes merupakan penyakit kronis yang disebabkan karena pancreas tidak dapat memproduksi insulin sesuai dengan kebutuhan tubuh atau kondisi ketika tubuh tidak dapat menggunakan insulin secara efektif. Pada tahun 2021 Indonesia memperoleh urutan ke-5 didunia dengan populasi penderita penyakit diabetes terbanyak dan terdapat lebih dari 1 orang diantara 10 orang dewasa yang menderita diabetes. Semakin meningkatnya penderita diabetes di Indonesia bahkan di dunia yang sebenarnya sudah positif diderita tetapi tidak menimbulkan komplikasi lebih lanjut hingga kematian. Hal ini disebabkan karena belum adanya model klasifikasi deteksi dini gejala awal diabetes. Maka pada penelitian ini perlu dilakukannya pembuatan model klasifikasi deteksi dini gejala awal penyakit diabetes dengan metode penelitian Cross Industry Standard Process for Data Mining (CRISP-DM) yaitu dengan melaksanakan riset jurnal. Penelitian ini menggunakan algoritma Random Forest. Data yang akan digunakan bersifat public yang didapatkan melalui website www.kaggle.com dengan total 520 record dataset yang terdiri dari 17 attribut, terdapat 320 dataset dengan positif diabetes dan 200 dataset dengan negative diabetes. Klasifikasi dilakukan dengan dengan komposisi data training dan data testing 90:10 menggunakan teknik stratified random sampling dengan number of trees 5, maximal depth 5, dan dilakukannya apply pruning. Diperoleh akurasi 90.38%, precision 100%, recall 84.38% dan niai AUC 1.00. Sehingga dapat disimpulkan bahwa model klasifikasi dengan algoritma Random Forest dapat bekerja sangat baik terhadap data deteksi dini gejala awal penyakit diabetes.